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Abstract

What is the unit of analysis in economics? The prevailing orthodoxy in main-
stream economic theory is that the individual is the ‘ultimate’ unit of analysis.
The implicit goal of mainstream economics is to root macro-level social structure
in the micro-level actions of individuals. But there is a simple problem with this
approach: our knowledge of human behavior is hopelessly inadequate for the
task at hand. Faced with real-world complexities, economists are forced to make
bold (and seldom tested) assumptions about human behavior in order to make
models tractable. The result is theory that has little to do with the real world.

This dissertation investigates an alternative approach to economics that I call
‘economics from the top down’. This approach begins with the following ques-
tion: what happens when we take the analytical focus off of individuals and put it
into social hierarchy? The effect of this analytical shift is that we are forced to
deal with the realities of concentrated power. The focus on hierarchy leads to
some surprising discoveries. First, I find evidence that hierarchical organization
has a biophysical basis. I show that institution size (firms and governments)
is strongly correlated with rates of energy consumption, and that the growth
of institutions can be interpreted as the growth of social hierarchy. Second, I
find that hierarchy plays an important role in shaping income and income dis-
tribution. I find that income scales strongly with hierarchical power (defined as
the number of subordinates under one’s control), and that hierarchical power
affects income more strongly than any other factor measured. Lastly, using an
empirically informed model of the hierarchical structure of US firms, I find that
hierarchy plays a dominant role in shaping the income distribution tail.

These results hint that hierarchy can be used to unify the study of economic
growth (understood in biophysical terms) and income distribution. I conclude
by making the first prediction of how the concentration of hierarchical power
should relate to the growth of energy consumption. This prediction sheds new
light on the origin of inequality. While this ‘top down’ approach to economics
is in its infancy, the results are encouraging. Focusing on hierarchy gives fresh
insight into many of the important questions facing society — insight that cannot
be obtained by focusing on individuals.
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Chapter 1

Introduction: Economics from the Top Down

[IJn modern economics ... the ultimate unit of analysis is always the individual;
more aggregative analysis must be regarded as only provisionally legitimate.

— Brennan and Tullock [1]

This dissertation offers a new approach to economic theory that I call ‘eco-
nomics from the top down’. To avoid confusion, this has nothing to do with
‘trickle-down’ economics, or with prescriptive economics of any kind. Instead,
‘economics from the top down’ is an investigative approach that is motivated
by the following question: what happens when we take the analytical focus off of
individuals and put it into social hierarchy?

By the standards of modern neoclassical orthodoxy, this is a heretical ques-
tion. As Brennan and Tullock articulate, individuals are the basic unit of analysis
in economics — full stop. But while it is an admirable goal to try to root com-
plex social structure in the behavior of individuals, we are hopelessly far from
being able to achieve this correctly. The problem is that we do not have an
accurate model of human behavior (one that can make precise, falsifiable pre-
dictions). Without such a model, seeking to explain social structure in terms of
the behavior of individuals is fraught with difficulty. To mitigate our ignorance
about human behavior, bold assumptions must be made. But even if a model
gives realistic results, its validity remains entirely hinged to the foundational
assumptions, which often go untested [2].

E.O. Wilson, discussing a similar problem in biology, deserves to be quoted at
length. To make this passage relevant to economics, simply replace the word ‘bi-
ologists’ with ‘economists’ and substitute any biological phenomena with social
phenomena:

Biologists, it has been said, suffer from physics envy. They build physics-like
models that lead from the microscopic to the macroscopic, but find it diffi-
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cult to match them with the messy systems they experience in the real world.
Theoretical biologists are nevertheless easily seduced. ... Armed with sophis-
ticated mathematical concepts and high-speed computers, they can generate
unlimited numbers of predictions about proteins, rain forests, and other com-
plex systems. With the passage to each higher level of organization, they need
to contrive new algorithms, which are sets of exactly defined mathematical op-
erations pointed to the solution of given problems. And so with artfully chosen
procedures they can create virtual worlds that evolve into more highly orga-
nized systems. Wandering through the Cretan labyrinth of cyberspace they
inevitably encounter emergence, the appearance of complex phenomena not
predictable from the basic elements and processes alone, and not initially con-
ceivable from the algorithms. And behold! Some of the productions actually
look like emergent phenomena found in the real world.

Their hopes soar. They report the results at conferences of like-minded
theoreticians. After a bit of questioning and probing, heads nod in approval:
"Yes, original, exciting, and important — if true." If true ... if true. Folie de
grandeur is their foible, the big picture their illusion. They are on the edge
of a breakthrough! But how do they know that nature’s algorithms are the
same as their own, or even close? Many procedures may be false and yet
produce an approximately correct answer. The biologists are at special risk
of committing the fallacy of affirming the consequent: It is wrong to assume
that because a correct result was obtained by means of theory, the steps used
to obtain it are necessarily the same as those that exist in the real world. [3]

Wilson makes the problem extremely clear. But in the face of a paucity of
knowledge, how do we proceed? How do we build social science theories that
connect the macro level to the micro level? The method that I adopt in this dis-
sertation is to partially chip away at the problem. I admit that we know very little
about human behavior, so I do not attempt a ‘bottom-up’ approach [4]. That is,
I do not attempt to explain macro-level social structure in terms of the behav-
ior of individuals. Instead, I adopt a ‘top-down’ approach. I attempt to explain
macro-level social structure in terms of another structure — social hierarchy. The
name ‘top down’ serves two purposes. Firstly, it differentiates my method from
the ‘bottom-up’ approach — often called methodological individualism [5, 6].
Secondly, the name ‘top-down’ nicely captures the focus on hierarchy. In a hier-
archy, power flows from the top down. By focusing on the top-down structure of
hierarchy, we implicitly put concentrated power at center stage. This is very dif-
ferent from the neoclassical approach, in which concentrated power is ignored,
or even assumed not to exist [ 7-9].

But why focus specifically on hierarchy? Why not some other social struc-
ture? I choose hierarchy as my unit of analysis for a number of reasons. First,
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hierarchy is ubiquitous. Hierarchy, I believe, is the basic building block for most
(if not all) modern institutions, and it has deep roots that likely extend into
prehistory [10,11]. And in evolutionary terms, humans are but one of a vast
number of social animals, virtually all of which use hierarchy as a method of
social organization [12-17]. A second reason to focus on hierarchy is that it
offers a simple way of studying the class structure of society. While many social
scientists have stressed a focus on class structure [ 18-28], there is no consen-
sus on how classes should be defined and studied. Hierarchy is useful because
it provides a mathematically-generalizable form for defining and studying so-
cial class. Lastly, I am interested in hierarchy because it is conspicuously absent
from mainstream economic theory, and thus its role in shaping social structure
is poorly understood.

1.1 Summary of Findings

On the face of it, this dissertation is a sprawling journey through a wide vari-
ety of seemingly unrelated social phenomena. At various points, I investigate
energy consumption, institution size, technological change, intra-firm income
distribution, the different factors that affect income, personal income distribu-
tion, functional income distribution, and changes in income inequality over time.
How are these things possibly related? The surprising finding in this dissertation
is that all of these phenomena can be linked to social hierarchy. Let me explain
how.

In Chapter 2, I explore the relation between energy consumption and insti-
tution size. I find that as energy consumption increases (both across space and
across time), there is a systematic increase in institution size. Specifically, as
energy consumption increases, self-employment declines, employment in large
firms increases, average firm size increases, and government employment in-
creases. I find evidence that these trends are indicative of a general increase in
social hierarchy with energy consumption. Why is hierarchy related to energy
consumption? I hypothesize that increasing energy consumption requires in-
creasing the scale and complexity of technology, which in turn, requires greater
social coordination. But according to the work of anthropologist Robin Dunbar,
brain size places a key limit on primate group size. [29-31]. Dunbar’s primate
evidence predicts an average human group size of about 150 (Dunbar’s number).
Building on the work of Turchin and Gavrilets [32], I propose that hierarchy al-
lows humans to sidestep this group-size limitation. A hierarchy’s nested chain of
command allows group size to grow without any corresponding increase in the
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number of required social relations. This suggests that increasing hierarchical
organization plays a central role in increasing energy consumption.

In Chapter 3, I turn the focus to personal income. The dominant paradigm in
personal income distribution theory is that income stems from productivity. But
this approach has a severe (but little discussed) problem: when differences in in-
dividual productivity are measured objectively (and not circularly), they are far
too small to account for observed differentials in income. But if not productiv-
ity, then what explains differences in personal income? I propose that personal
income is most strongly determined by hierarchical power. What is hierarchical
power? I define it as the ability to influence subordinates within a hierarchi-
cal chain of command. I measure hierarchical power in terms of the number
of subordinates under an individual’s control. Using this metric, I find that rel-
ative income within firms scales strongly with hierarchical power. Using data
for intra-firm promotions/demotions, I also find that changes in relative income
within firms scale strongly with changes in hierarchical power. Lastly, I find that
grouping individuals by hierarchical level (across firms) affects income more
strongly than any other factor measured. This evidence suggests that hierarchy
plays a key role in shaping personal income.

In Chapter 4, I keep the focus on income, but expand the scope of analysis. I
conduct a general inquiry into how hierarchy affects income distribution. I build
a hierarchical model that extrapolates the available firm-level data to create a
large-scale simulation of the hierarchical structure of the United States economy
over the last two decades. After showing that this model does a reasonably good
job of reproducing the features of US income distribution, I use the model for a
wide variety of analysis. This leads to three major findings.

First, I find that hierarchy plays a dominant role in shaping the tail of US
income distribution. This is important, because the power-law tail of income
distribution is a celebrated empirical regularity that is usually explained in indi-
vidualistic terms [33-49]. In contrast, I find that the power law scaling of top
incomes is likely caused by hierarchical organization. The second major finding
is that hierarchy can be used to relate personal and functional income distribu-
tion. Drawing on Nitzan and Bichler’s ‘capital as power’ hypothesis [8], I propose
that earning capitalist income is a function of hierarchical power. I find that CEO
pay evidence is consistent with this hypothesis. Moreover, a model that general-
izes CEO pay trends accurately reproduces the distribution of capitalist income
in the United States. Lastly, I investigate if the recent explosion in US top income
shares can be understood in terms of a hierarchical redistribution of income. I
find that a model implementing this hypothesis accurately reproduces several



A Glimpse of a Synthesis? 5

) Synthesis? o .
Economic Growth B > Income Distribution

Evidence for a Power Theory of
Personal Income Distribution

Energy and Institution Size

A Hierarchy Model of Income Distribution

Social Hierarchy

Figure 1.1: A Glimpse of a Synthesis?

This figure shows how I conceive the big-picture structure of this dissertation. Each
of the three papers (Ch. 2-4) connects either biophysical economic growth or income
distribution to social hierarchy. But this connection begs a question: are growth and
income distribution also related? I explore this possibility in Chapter 5.

key trends in US income distribution. To summarize, hierarchy seems to play a
central role in shaping the size, composition, and dynamics of top incomes.

1.2 A Glimpse of a Synthesis?

I have given this dissertation the inquisitive (and not declarative) subtitle “Does
Hierarchy Unify Economic Theory?”. As I see it, each of the three papers in this
dissertation connects either biophysical economic growth or income distribution
to social hierarchy. This hints at a connection between growth and income dis-
tribution themselves (see Fig. 1.1). It is the possibility of unifying these two
phenomena that informs the dissertation subtitle.

The reader may be asking — what is biophysical economic growth? In short,
it is the growth of the economy measured in biophysical rather than monetary
terms. As discussed in the ‘Methods’ section below, I treat energy consumption
as biophysical indicator of economic scale. Why? Energy is the life-blood of all
non-equilibrium systems. The rate of energy flow limits the types of structure
that a given system can achieve. As such, when I connect the growth of energy
consumption to social hierarchy (Ch. 2), I view this as an implicit connection
between biophysical economic scale and social hierarchy.
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In Chapter 5, I use the cumulative results in the dissertation to offer the
glimpse of a synthesis between biophysical economic growth and income distri-
bution. The basic thinking is as follows. If social hierarchy increases with energy
consumption, and hierarchy is a mechanism for concentrating power, it follows
that power should become more concentrated as energy consumption increases.
Furthermore, if concentrations of hierarchical power lead to concentrations of
income (as found in Ch. 3 and 4), the growth of energy consumption should be
associated with an increase in income inequality.

To make this prediction concrete, I use the results in Chapters 2-4 to build
a model of how hierarchical power concentration might increase with energy
consumption. If this model is correct (and there are many caveats), it indicates
something surprising. It suggests that a society’s first order of magnitude in-
crease in energy consumption — from subsistent metabolic levels to agrarian
levels — should correspond with a massive increase in the concentration of hi-
erarchical power. After this initial transition, the model suggests that further
increases in energy consumption (to industrial levels) should have little effect
on power concentrations. Given the connection between power inequalities and
income inequalities, this suggests that the transition from hunter-gatherer soci-
eties to agrarian societies should be associated with a substantial increase in
inequality. And counter-intuitively (to me at least), all subsequent changes to
biophysical economic scale should have little effect on inequality. Interestingly,
recent archaeological evidence suggests that this is what actually occurred [50].
Hunter-gatherer societies had very little inequality, but the transition to agri-
culture brought levels of inequality that were comparable to modern, industrial
societies. My analysis suggests that this non-linear trend owes to the non-linear
scaling behavior of hierarchy itself.

To summarize, using hierarchy as the unit of analysis seems to be a fruitful
way to do economic research. Hierarchy, it would seem, lies at the very heart of
human social organization, and is related to many of the outstanding questions
in economics (and social science in general).

1.3 Methods

The methods used in this dissertation bear little resemblance to what most peo-
ple would recognize as ‘economics’. Because my methods are so different, I
want to make their intellectual origins explicitly clear. My approach has four
main components, outlined below.
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A Biophysical Approach to Economics

Put succinctly, a biophysical approach to economics means taking the laws of
thermodynamics seriously. These laws outline the basic rules of energy trans-
formation: (1) energy can neither be created nor destroyed; and (2) all energy
transformation processes must incur losses. It is hard to overstate the scientific
importance of these laws. Indeed, the physicist Arthur Eddington once remarked
“if your theory is found to be against the [laws] of thermodynamics I can give
you no hope; there is nothing for it but to collapse in deepest humiliation” [51].

The laws of thermodynamics imply that, without flows of energy, all roads
lead to equilibrium. And thermodynamic equilibrium is a boring state. Most
of the interesting things that scientists study are out of equilibrium, and are
sustained by a constant flow of energy [52,53]. Life is perhaps the most com-
pelling example. All life on earth is united by a common struggle — a “struggle
for free energy available for work” [54]. The ability to harness energy places
key constraints on the structure of life, from the level of the cell [55], to the
organism [56,57], to the ecosystem [58].

Probably the first economist to take the laws of thermodynamics seriously
was Nicholas Georgescu-Roegen [59]. Since Georgescu-Roegen’s work in the
1970s, there has been growing interest in reformulating economic theory to
have a biophysical basis [60-64]. By far the most popular approach is to reform
neoclassical growth theory by adding energy as a third factor of production,
beside labor and capital. A non-exhaustive list of scholars who have pursued
this approach would include [63,65-74].

I take the biophysical approach seriously. But unlike many other economists,
my goal is not to use energy consumption to explain the growth of real GDP. In
fact, I am not interested in economic output at all. Basic measurement issues
(outlined below) conspire to make the objective measure of economic output
impossible. Instead, I am interested in energy consumption in its own right.
Because of its importance for sustaining non-equilibrium structure, I use energy
consumption as a biophysical indicator of economic scale. (For more details about
this approach, see [75]).

Addressing The Measurement Problem

Most of mainstream economic theory is prefaced on the idea that economic out-
put is objectively measurable. This is true of neoclassical marginal productiv-
ity theory, which explains income distribution in terms of the output of labor
and capital [76-81]. It is also true of neoclassical economic growth theory,
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which assumes that the economy has a measurable, aggregate output [82, 83].
The curious thing, however, is that these theories are all derived using the as-
sumption of a one-commodity economy. For instance, Giorgio Colacchio ob-
serves that “the only case consistent with the marginal productivity theory is
that of a ‘one-commodity’ economy” [84]. Similarly, in formulating his canoni-
cal growth model, Robert Solow assumes: “There is only one commodity, output
as a whole” [82]. Why do these theories begin with such a bizarre assumption?
It is because this is the only condition under-which the comparison and aggre-
gation of different outputs is possible.

The central problem is this: if we want to add or compare two or more things
that are qualitatively different, we need a common unit of measurement. How-
ever, for each different choice of unit, our comparison (or aggregation) will yield
different results. Giampietro et al. call this the “epistemological predicament as-
sociated with purposive quantitative analysis ... the observer always affects what
is observed when defining the descriptive domain” [85].

Economists make matters worse by choosing price as a unit of comparison.
This does two things. Firstly, it makes marginal productivity theory circular.
Why? Output is supposed to explain income, but by using prices to aggre-
gate/compare output, we are actually measuring output in terms of income.
Secondly, the fact that prices change over time causes a host of measurement
problems. Francis Edgeworth observes:

If one great group of commodities varies pretty uniformly in one direction,
and another in a different direction (or even in the same direction but in a
markedly different degree), then the task of restoring the level of prices can no
longer be regarded as a purely objective ... problem. (cited in [86], emphasis
added)

Over the years, many authors have commented on one or more aspects of
this measurement problem (a non-exhaustive list would include [87-93]). But
while many critical economists are aware of the problem, few are willing to
take the logical course of action. If heterogeneous output cannot be objectively
compared or aggregated, then there is no sense in trying to measure it. As a
result, we need to build theory that does not rely on the concept of economic
output.

As far as I know, Jonathan Nitzan and Shimshom Bichler [8] were the first
to arrive at this conclusion. They propose an approach to political economy
that focuses entirely on differential (price-ratio) quantities rather than on ‘real’
output. Inspired by Nitzan and Bichler, I have made the decision to abandon
the measurement of economic output. Instead, I do one of two things. When I
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A Random network B Scale-free network € Hierarchical network

Figure 1.2: Different Forms of Networks

This figure (taken from Barabasi and Otvai [94]) shows three different types of net-
works. On the left is a random network, generated by adding edges between nodes at
random. In the middle is a scale-free network. This name owes to the fact that there is
no typical scale for the number of connections between nodes. Some nodes have many
connections, some have very few. Lastly, the right panel shows a hierarchical network,
which is characterized by a nesting structure.

want a measure of (biophysical) economic scale that is independent of monetary
value, I use energy consumption per capita. Alternately, when I am interested
in prices, I use differential ratios to allow comparisons.

Recognizing Ultra-sociality

There is a curious disconnect between how economists model humans, and how
the more historical (and biological) oriented social sciences view our species. In
economics, humans are treated as essentially asocial “globules of desire” [95].
Individuals exist purely to maximize their own utility. This asocial model is
at odds with the rest of our scientific knowledge. Modern science recognizes
that humans are but one form of primate, and all primates are social animals.
Moreover, there is growing agreement that human sociality far surpasses our
primate cousins. Rather than merely being social, humans are ultra-social [ 96—
102]. This means that we form very large groups and are capable of cooperating
with non-kin in ways that other primates cannot.

Taking ultra-sociality seriously means focusing on social connections between
individuals. Network science offers a powerful way to do this [103]. We imag-
ine individuals as ‘nodes’ in the network, and social relations as the ‘edges’. My
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Neoclassical Marxist Capital as Power

S °
Capitalist
I.I w

—
I Surplus ,—‘—' Power

Reciprical ®

[ ) [ )
Exchange
Worker

Figure 1.3: Idealized Units of Social Interaction

This figure shows my understanding of the basic units of social interaction adopted
by Neoclassical and Marxist theory. Neoclassical theory is predicated on reciprocal ex-
change between utility maximizing parties. Marxist theory is predicated on the pro-
duction of surplus by workers and its appropriation by capitalists. I propose that social
(branching) hierarchy should be used as the unit of interaction for a capital as power
approach to political economy. The premise is that a superior wields power over one or
more subordinates.

focus on hierarchy is inspired by network science. As shown in Figure 1.2, a hi-
erarchy is really just a particular type of network — one with a nested structure.
A pure hierarchical network has a very important property. No matter where we
begin, if we trace connections (going in only one direction) we will always end
up in the same place [104]. To see how this works, think about a hierarchical
chain of command. No matter which subordinate we begin on, if we move up the
chain of command, we will always end at the same individual — the ‘ruler’. A
hierarchy is special type of network that concentrates power in the hands of the
few. This property, I believe, is extremely important for understanding human
social structure.

Capital as Power

It is hard to overstate the importance of Nitzan and Bichler’s [ 8] ‘capital as power’
framework to my approach. To begin with, Nitzan and Bichler offer a compelling
critique of both the neoclassical and Marxist approaches to political economy.
The problem, they argue, is that the prerequisite units simply do not exist. Neo-
classical theory is based on the concept of reciprocal exchange in which indi-
viduals maximize utility. But utility is unobservable, even in principle. Marxist
theory, on the other hand, is based on the concept of surplus value. Workers cre-
ate value, which is then appropriated by capitalists. But like utility, Nitzan and
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Bichler convincingly argue that surplus value cannot (even in principle) be mea-
sured. Why? It is based on the non-existent unit of ‘socially-necessary abstract
labor time’.

Nitzan and Bichler argue that political economy needs a fresh start — a “ctrl-
alt-del” [105]. I find this boldness liberating — it unburdens us of centuries of
dead-end theoretical baggage. So what is the way forward? Nitzan and Bich-
ler argue that it involves focusing on the relation between power and monetary
value. I agree. I take this focus on power (and value) and merge it with a focus
on hierarchy. My contribution to capital as power is to add an idealized unit
of social interaction — the power-relation between a superior and subordinates
within a hierarchy (see Fig. 1.3). Of course, this is not the only type of so-
cial relation that humans engage in; rather, it is one that has received too little
attention from political economists.

1.4 Layout

This dissertation consists of the three self-contained papers:

1. Energy and Institution Size
2. Evidence for a Power Theory of Personal Income Distribution
3. A Hierarchy Model of Income Distribution

‘Energy and Institution Size’ has been published in PLOS ONE [106], and ‘Ev-
idence for a Power Theory of Personal Income Distribution’ is currently under
review at the Journal of Economic Issues.

A note to the reader. The writing of these three papers spans a significant
period of time, while the overarching theme that unifies them has only recently
become clear to me. As such, each paper makes little reference to others. I leave
the discussion of connections for the conclusion in Chapter 5.
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Chapter 2

Energy and Institution Size

Abstract

Why do institutions grow? Despite nearly a century of scientific effort, there
remains little consensus on this topic. This paper offers a new approach that
focuses on energy consumption. A systematic relation exists between institution
size and energy consumption per capita: as energy consumption increases, insti-
tutions become larger. I hypothesize that this relation results from the interplay
between technological complexity and human biological limitations. I also show
how a simple stochastic model can be used to link energy consumption with firm
dynamics.

2.1 Introduction

Throughout the last century, there has been a recurrent desire to connect hu-
man social evolution to changes in energy consumption [1-4]. The motivation
is simple: the laws of thermodynamics dictate that any system that exists far
from equilibrium must be supported by a flow of energy [5]. Since human so-
cieties are non-equilibrium systems, it follows that energy flows ought play an
important part in social evolution. However, it has proved difficult to move from
grand pronouncements based on the laws of thermodynamics to a quantitative
understanding of the relation between energy use and social evolution [6]. This
paper offers a contribution to such a quantitative understanding.

This paper is concerned with one particular aspect of social change: the
growth in size of the institutions that control human labor. While such institu-
tions have taken many forms throughout history, in the modern era, the control
of human labor is dominated by two institutions: the business firm and govern-
ment. In this paper, institution size refers to the amount of human labor (i.e
employment) controlled by an organization. Under this definition/metric of in-
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stitution size, I demonstrate that a pervasive, positive correlation exists between
institution size and energy use per capita.

I pursue two avenues for understanding the relation between energy and
institution size. The first approach draws on the rich history of stochastic mod-
elling within firm size theory. Stochastic (random) models have been success-
fully used to link firm dynamics to the overall firm size distribution. Yet there
is little understanding of what drives variations in firm dynamics. Using data
on firm age and firm size to constrain a stochastic model, I demonstrate that
firm dynamics are likely related to rates of energy consumption, and I offer a
prediction of what this relation should look like.

The second approach is more speculative, and aims to offer a general expla-
nation of why rates of energy consumption are related to institution size. I pro-
pose two factors that mediate this relation: technological scale and social hierar-
chy. I hypothesize that increases in energy consumption involve a trend towards
the use of technologies that are larger and more complex. These increasingly
large technologies require the coordination of greater numbers of people. Given
the limitations of the human brain [7], I argue that large-scale social coordi-
nation is most easily achieved through social hierarchy [8] and that firms and
government are specific manifestations of this hierarchy.

This paper is organized as follows. After a brief review of the strengths and
weaknesses of various theories of institutional size (Sec. 2.1.1), Section 2.2 dis-
cusses the empirical evidence connecting energy consumption with institution
size. Section 2.3 then uses a stochastic model to further illuminate the relation
between energy use and firm dynamics. Finally, Section 2.4 presents and tests
a series of hypotheses linking institution size to technological scale and social
hierarchy.

2.1.1 Theories of Institutional Size

Theories of institution size can be divided into two classes: those that concern
themselves with the causes of institutional growth (‘wWhy’ theories) and those that
do not (‘how’ theories). ‘How’ theories have met with great empirical success,
while ‘why’ theories have struggled to offer explanations that are testable.

All ‘how’ theories of institutional size can be traced back to the work of the
French economist Robert Gibrat, who discovered that the rate of growth of busi-
ness firms seemed to be independent of their size [9]. While later investigation
found this ‘law of proportional effect’ to be only approximately true — growth
rate variance tends to decline with size [10-12] — it has led to a rich history of
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stochastic firm growth models [13,14]. The basic principle is that firm growth is
treated probabilistically. Each firm is submitted to a series of random shocks that
make it grow (or shrink) over time. When applied to large numbers of firms,
the result is a firm size distribution. The surprising finding is that these purely
random models can very accurately predict the functional form of real-world
firm size distributions (see Appendix A.6).

Despite their success, ‘how’ theories are not particularly satisfying because
they do not explain why institutions grow. Unfortunately, theories that do at-
tempt to explain the cause of institution growth often rely on unmeasurable
variables, and as a result, are untestable.

The theory of the firm has been dominated by Ronald Coase’s transaction
cost approach. According to Coase, “... a firm will tend to expand until the costs
of organizing an extra transaction within the firm become equal to the costs of
carrying out the same transaction by means of an exchange on the open market
or the costs of organizing in another firm” [15]. Unfortunately, transaction costs
have been notoriously difficult to define (let alone measure), rendering Coasian
theory untestable [16,17]

Other theories propose that management talent is the driver of firm growth.
For instance, Robert Lucas assumes that the firm size distribution results from
“allocat(ing) productive factors over managers of different ability so as to maxi-
mize output” [18]. Yet Lucas concedes that the causal factor in this model — the
talent of managers — is “probably unobservable”. Despite this problem, Lucas’s
theory remains popular [19,20].

Still other theories propose that firm growth is the result of a resource-driven
competitive advantage [21,22]. Unfortunately, this approach has struggled to
stipulate exactly how a particular resource is transformed into a value-creating
competitive advantage. Priem and Butler argue that the ‘resource-based view’
advances a theory of value that is tautological — resources create value because
they are (among other things) valuable [23].

In terms of measurability, theories of government size have faired no better
than theories of firm size. One approach is to apply the rational-choice model
to the behavior of voters. Government size is treated as a reflection of the pref-
erences of utility maximizing voters [24, 25]. However, without an objective
measure of individuals’ internal preferences, this theory is untestable.

Another approach is to assume that government bureaucracies (or govern-
ment as a whole) are self-serving entities that attempt to maximize their budgets,
but are restrained by voters and/or an institutional framework such as the con-
stitution [26,27]. While maximizing behavior is one of the fundamental postu-
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lates of neoclassical economics, the hypothesis that humans maximize external
pay-offs has been falsified [28].

The lack of measurable variables has consistently plagued ‘why’ theories of
institution size. If a new theory is to be successful, it must demonstrate a connec-
tion between institution size and some universally measurable quantity. Energy
consumption is just such a quantity.

2.2 Energy and Institution Size: Empirical Evidence

To study the relation between energy and institution size, I compare variations in
energy use per capita to variations in the size of firms and government over both
space and time. For firms, I investigate how changes in the base, tail and mean
of the firm size distribution are related to changes in energy use per capita. I use
self-employment data to investigate the base of the firm size distribution (relying
on the assumption that self-employer firms are very small). To investigate the
tail of the firm size distribution, I look at the employment share of the largest
firms. To quantify the relative size of government, I measure the government
share of total employment.

Comparison of these institution size metrics with energy use per capita are
shown in Figures 2.1-2.3. Figure 2.1 shows international trends (each colored
line represents the path through time of a specific country), while Figure 2.2
shows time-series data for United States. Figure 2.3 (which focuses only on
firms) merges data from Figures 2.1-2.2 and adds US sectoral and subsectoral
level data. Although this synthesis merges data that are not identically defined
(see Fig. 2.3 caption), the result is clear: the inclusion of sectoral data serves
to extend (by two orders of magnitude) the trends found at the national level.
In the case of small firms and mean firm size, the inclusion of sectoral data also
increases the regression strength.

To summarize our findings, the evidence in Figures 2.1-2.3 suggests the fol-
lowing ‘stylized’ facts. As energy use per capita increases:

The small firm employment share declines;
The large firm employment share increases;
The mean firm size increases;

> wbh =

The government employment share increases.

Findings 1-3 suggest that increases in energy consumption are associated
with a shift in employment from small to large firms. This indicates that the firm
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Figure 2.1: Institution Size vs. Energy Use per Capita at the International

Level

This figure shows how different metrics of institution size vary with energy consumption

per capita. Panels A-C analyze variations in firm size by looking at the base, tail, and

estimated mean of the firm size distribution. Panel D analyzes variations in government

size. In order to show as much evidence as possible, panels A, B and D are a mix of

time series and scatter plot. Lines represent the path through time of individual coun-

tries while points represent a country with a single observation. Error bars in panel C

represent the 95% confidence interval of mean firm size estimates. Variations in self-

employment, large-firm, and government employment share vs. energy are modelled

with log-normal cumulative distribution functions. Mean firm size vs. energy is mod-

elled with a power law. Grey regions indicate the 99% confidence region of each model.

For sources and methodology, see Appendix A.1.



% of Total Employment

Number of Employees

10t

20t

30t

Energy and Institution Size: Empirical Evidence

25

A. Self-Employment

R?=0.86

= Self-Employment (left)
—_— Energy use per capita (G.] right

450

1 350

1250

1 150

1880 1900 1920 1940 1960 1980 2000 2020

10

4

3

C. Average Firm Size

R?=0.9

Average Firm Size (left)

—_— Energy use per capita (G.] right

450

1 350

1250

1 150

1880 1900 1920 1940 1960 1980 2000 2020

% of Total Employment

% of Total Employment

25

20t

15¢

10t

0

B. 200 Largest Firms

R?=0.73

= 200 Largest Firms (left)
—_— Energy use per capita (GJ right]

450

1 350

1250

1 150

1880 1900 1920 1940 1960 1980 2000 2020

20t

15¢

10t

D. Government

R?=0.6

L]
h
[N}
h
h
I
I
L]
L}
LI
[}
L}
[}
1
1

- Government (left)
—_— Energy use per capita (G.] right

450

1 350

1250

1 150

1880 1900 1920 1940 1960 1980 2000 2020

Figure 2.2: Institution Size vs. Energy Use per Capita in the United States

This figure shows the trends for various measures of institution size in the United States

over the last century. Trends mirror those found at the global level. As energy consump-

tion per capita increases, self-employment rates decline (panel A, note reverse scale),

the large firm employment share increases (panel B), mean firm size increases (panel

C), and the government employment share increases (panel D). Note that government

regressions exclude World War II (dotted line). For sources and methodology, see Ap-

pendix A.1.
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Figure 2.3: Synthesizing Evidence — Firm Size vs. Energy Use per Person
or Worker

This figure combines data from 3 different units of analysis (nations, sectors, and sub-
sectors) to offer a comprehensive picture of the relation between firm size and energy
use per capita (or per worker). ‘US Industry’ consists of construction and manufacturing
sectors, while ‘US Manufacturing Subsectors’ are the smallest subdivisions of the man-
ufacturing sector. At the national level, energy use is measured per person, while at the
sectoral level, it is measured per worker. In panel A, self-employment data (for nations
and US Industry) is merged with the data for the employment share of firms with 0-4
employees in US manufacturing subsectors. In panel B, data for the employment share
of the largest 25 firms (for nations and US Industry) is merged with data for the employ-
ment share of firms with more than 5000 employees in US manufacturing subsectors.
Panel C shows mean firm size data at the national and sectoral level. Grey regions in-
dicate the 99% confidence region of each model. For sources and methodology, see
Appendix A.1.
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size distribution becomes more skewed as energy consumption increases. In Ap-
pendix A.3, I demonstrate that this shift (at the national level) can be accurately
modelled in terms of the changing exponent of a power law distribution.

Assuming a correlation between energy use and GDB then the evidence pre-
sented here is consistent with previous research that has focused on the relation
between firm size and GDP per capita [18,20,29-31]. However, my focus here
on energy use (rather than GDP) is intentional: it is part of a larger effort to
ground economic theory in the laws of thermodynamics [32], and to root em-
pirical analysis in biophysical (rather than monetary) phenomena [33-36].

Following the long-standing division in institution size theory between ‘how’
and ‘why’ theories, I adopt two separate approaches for understanding the rela-
tion between institution size and energy consumption. The first approach deals
with the ‘how’ question: how exactly do changes in firm size occur? To answer
this question, I use a stochastic model to illuminate the relation between energy
use and firm dynamics. The second approach deals with the more difficult ‘why’
question: why is institution size related to energy consumption. To answer this
question, I investigate the relation between energy, technological change, and
social coordination.

2.3 The ‘How’ Question: Energy and Firm Dynamics

Beginning with the work of Gibrat [9] and later Simon and Bonini [37], stochas-
tic models have been successfully used to explain the functional form of the firm
size distribution in terms of firm dynamics. The implication of these models is
that changes in average firm size occur through changes in firm dynamics. Given
the connection between energy consumption and firm size, it follows that firm
dynamics ought to vary with changes in energy consumption.

Ideally, we would look at this relation directly by investigating international
variations in the firm growth rate distribution and comparing them to variations
in energy consumption. Unfortunately, data constraints make such a comparison
difficult. Calculating international firm growth rate distributions would require
longitudinal data for a large, representative sample of firms in many countries.
I am not aware of the existence of any such data at the present time. However,
we can use what little data is available to make inferences about the relation
between energy and firm dynamics.

Firm age data provides an indirect window into firm dynamics. If we assume
that new firms start at a small size, then we can infer the historic rate of growth
of any firm, given its current age and size (i.e. a new, large firm likely grew
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rapidly, while an old, small firm likely grew slowly). Figure 2.4A shows how
firm age is related to rates of energy consumption per capita. The dataset used
here (the GEM database) does not report firm age directly. Instead, it reports
whether or not a firm is under 42 months of age. I use this data in Figure 2.4A
to calculate the fraction of firms that are under 42 months of age. This fraction
tends to decline as energy use per capita increases.

This data clearly hints that a systemic relation exists between energy con-
sumption and firm dynamics. In the following section, I use a stochastic model
to make specific predictions about the form of this relation.

2.3.1 A Stochastic Model

The essence of all stochastic firm models is that growth is treated probabilisti-
cally. Each firm begins with some arbitrary initial size L,. After every discrete
time interval, the firm is subjected to a series of random ‘shocks’ (x;) that per-
turb it from its initial size. In our model, these shocks are drawn randomly from
a Laplace distribution. At any point in time, each firm’s size L(t) is equal to
the initial size times the product of all shocks (Eq. 2.1). If the time interval is
years, then each shock can be interpreted as the annual growth rate (in fractional
form).

L(t):Lo'Xl'Xz'...'xt (2.1)

This basic Gibrat model is unstable unless additional stipulations are added
(see Appendix A.5). I add a reflective lower bound that disallows firms from
shrinking below the size L. = 1 (this is sometimes called the Keston process
[38-40]). As long as firm growth rates have a downward drift, the model will
produce a stable firm size distribution. Using this model requires the following
assumptions:

The firm size distribution is a power law.

Firm growth rates are independent of size.

New firms are all born at size L = 1.

The firm birth rate is equal to the firm death rate.
Firm growth rates come from a Laplace distribution.

A

The firm size distribution exists in an equilibrium.

Assumption 1 is necessary because the model produces a power law distribu-
tion (see Appendix A.6). Recent studies have found that firm size distributions
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Figure 2.4: Using Firm Age Data to Estimate International Firm Dynamics

This figure demonstrates how firm age and mean size data can be used to restrict the
parameter space of a stochastic model. This allows predictions to be made about the
relation between energy use and firm dynamics. Panel A shows the country-level rela-
tion between the fraction of firms under 42 months old vs. energy use per capita (the
grey region indicates the 99% confidence region of the regression). Panel B shows the
country-level relation between the fraction of firms under 42 months old and mean firm
size (error bars indicate 95% confidence intervals). The ‘Fitted Zone’ in Panel B shows
the age-size relation produced by a stochastic model with a parameter range specifically
chosen to capture the empirical data. Panel C shows the model’s parameter space with
the resulting mean firm size indicated by color. Using the regressed relation between
mean firm size and energy use per capita (Fig. 2.1C), modelled mean firm size is then
transformed into an estimate for energy use per capita. The resulting relation between
w and b vs. energy use per capita (for data in the fitted zone only) is plotted in panel D.
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in the United States [41] and other G7 countries [42] are approximately power
laws. Less is known about developing countries. In Appendix A.3, I demonstrate
that the international data shown in Figure 2.1 is largely consistent with varia-
tions in a power law distribution, as are variations in the US firm size distribution
over the last century.

Assumption 2 is a property of most stochastic firm growth models, and dates
back to the work of Gibrat [9], who first found evidence that firm growth rates
were independent of size. Since then, some studies have found that growth rate
volatility tends to decline as firm size increases [10-12]). For the purposes of
this model, I neglect this real-world complexity for the following reasons. First,
firm growth rate studies use datasets (like Compustat) that are extremely biased
towards large firms. Very little is known about the growth rates of small firms.
In Appendix A.4, I use the Compustat database (which is very biased towards
large firms) to estimate how growth rates might vary with size in a non-biased
sample. I find that declines in growth rate volatility are likely important for only
a small minority of the largest firms. Furthermore, it is quite possible that the
rate at which volatility declines with firm size varies by country and/or through
time. However, good data (on which to base a model) is unavailable. Faced with
this lack of knowledge, I choose to make the simplifying assumption that firm
growth rates do not vary with size.

Assumptions 3 and 4 give meaning to the reflective lower bound. We can
interpret this boundary as a firm birth/death zone. Any firm that passes below
L =1 is assumed to have ‘died’. The reflection then represents the ‘birth’ of a
new firm of size L = 1. Since all firms that ‘die’ are immediately ‘reborn’, this
mechanism assumes that the firm birth rate equals the firm death rate. This
interpretation of the model allows firm age to be defined as the period since the
last reflection. In the real world, new firms are obviously not all born at size
one; however, evidence suggests that they are much smaller than established
firms [43,44].

Regarding assumption 5, it is well established that the firm growth distribu-
tion has a tent-shape that can be modelled with the Laplace distribution [45,46].
A Laplace (or double exponential distribution) has a sharper peak and fatter tails
than a normal distribution. Various theories have been proposed to explain this
phenomenon [47,48]; however the causes of this growth rate distribution are
exogenous to the current model.

Assumption 6 justifies testing the model against empirical data. Given some
arbitrary initial conditions, the model will always approach a stable firm size
distribution that is a function of only the growth rate distribution (provided
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that the stability conditions are met). Prior to arriving at equilibrium, there is
no relation between the growth rate distribution and the firm size distribution
(since any initial condition is possible). The equilibrium assumption justifies the
link between growth rates and the firm size distribution.

2.3.2 Estimating Variations in Firm Dynamics

The goal of this analysis is to estimate how firm dynamics (i.e. growth rate
distributions) change with levels of energy consumption per capita. This esti-
mation involves three steps. First, we must use appropriate empirical data to
restrict the parameter space of the model. Second, we analyze how this param-
eter space relates to mean firm size. Finally, we extrapolate, from mean firm
size, the relation between model parameters and energy use per capita.

Modelled growth rates are determined by the Laplace probability density
function below, where u and b are the location and scale parameters, respec-
tively.

The parameter u indicates the most probable growth rate, while b corresponds
to growth rate volatility (larger b indicates greater volatility). Because u and
b are free parameters, we must use appropriate empirical data to restrict their
range.

To do this, I use the empirical relation between the proportion of firms under
42 months of age and mean firm size (Fig. 2.4B). A range of model parameters is
chosen so that the resulting stochastic model produces the ‘fitted zone’ in Figure
2.4B. The corresponding parameter space of the model is shown in Figure 2.4C,
with fitted zone parameters indicated by the shaded region. Equilibrium mean
firm size for each u and b coordinate is indicated by color.

The final step in the analysis is to use the regressed relation between mean
firm size and energy use per capita (Fig. 2.1C) to estimate energy consumption
levels from modelled mean firm sizes (for data within the fitted zone only). We
can then plot the resulting predicted relation between model parameters and
energy use per capita (Fig. 2.4D).

Our restricted stochastic model predicts the following: (1) u should increase
non-linearly with energy consumption; and (2) b should decrease non-linearly
with energy consumption. In general terms, the model predicts that average firm
growth rates should increase with energy consumption, while volatility should
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decline. This result represents a definitive prediction about how firm dynam-
ics should vary with rates of energy consumption. Future empirical work can
determine if this prediction is correct.

2.4 The ‘Why’ Question: Energy, Technology and Hierarchy

Any attempt to explain why institutions grow must first settle on the appropri-
ate scale: do we attempt to explain why individual institutions grow, or do we
concern ourselves only with changes in average size? The former is almost cer-
tainly a futile task, much like offering a general theory to explain why individual
species go extinct. The answer is almost certainly, “It is complex”. Species go
extinct because of the complicated relation between their physiological charac-
teristics and their environment. Likewise, individual institutions grow/shrink
because of the complex relation between their characteristics and their environ-
ment (both biophysical and social).

The very success of stochastic firm growth models — in which randomness is
the explanatory mechanism — suggests that the individual institution is not the
appropriate domain for a ‘why’ explanation. Rather, we should be concerned
with groups of institutions. This decision effectively bars the traditional toolbox
of economic theory, which is to construct models based on simple postulates
about the behavior of individual entities (consumers, firms, governments, etc.).
Instead, we must rely on qualitative reasoning, tested against quantitative em-
pirical evidence.

My explanation of the energy versus institution size relation builds on the
‘social brain’ hypothesis proposed by Dunbar [49]. According to this hypothe-
sis, the size of the human brain inherently limits our ability to maintain social
relations. As Tuchin and Gavrilets note, social hierarchy offers a way around
this limit [8]. Within a hierarchy, an individual must maintain relations with
only his direct superior and direct subordinates. This means that a hierarchi-
cally organized group can grow in size without a corresponding increase in the
number of required social relations. I argue that firms and governments are sim-
ply the modern embodiment of social hierarchy, and are used as tools of social
coordination.

To connect social coordination to energy consumption, I explore the connec-
tion between energy use and technological scale. I argue that increases in energy
consumption are associated with the use of increasingly large technologies. The
construction, operation, and maintenance of these larger technologies, in turn,
requires greater social coordination.
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I formalize this reasoning in the joint hypotheses below. The order of these
hypotheses is meant to show a line of reasoning, not necessarily a direction of
causality.

Hypotheses

A. Increases in per capita energy consumption are accomplished (in part)
through increases in technological scale.

B. Increases in technological scale require increases in social coordina-
tion.

C. Humans have a limited capacity to maintain social relations. Hence,
egalitarian social coordination has strict limits.

D. Social hierarchies allow the scale of social coordination to grow with-
out a corresponding increase in the number social relations.

E. Institutions (firms and governments) are dedicated social hierarchies.

In the following sections, I review the empirical evidence in support of each
of these hypotheses.

2.4.1 Energy, Technological Scale and Social Coordination

My focus on technology (hypothesis A) is motivated both by theoretical argu-
ments and by the empirical results in Fig. 2.3.

From a theoretical (thermodynamic) perspective, energy ‘consumption’ is
best thought of as a conversion process. For most organisms, this energy conver-
sion process occurs within the body via cellular metabolism. Humans are unique
among all other organisms in that we have developed many inorganic ways of
harnessing energy outside our bodies. This inorganic energy consumption nec-
essarily involves the use of man-made energy converters that transform primary
energy into forms useful to humans. We call these man-made energy converters
‘technology’. Since energy use is fundamentally related to technology, it makes
sense to explore the ways in which technology relates to institution size.

On the empirical side, the fact that firm size scales with energy consumption
both at the national and sectoral level (Fig. 2.3) hints that technology medi-
ates this relation. Unlike nation-states, which are defined by geographic bound-
aries, economic sectors are defined by a particular type of activity. Similar activ-
ities tend to use similar technologies. This is especially true as we move to the
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smallest manufacturing subsectors. With names like Sawmills (NAIC 321113),
Petroleum Refineries (NAIC 32411), and Iron Foundries (NAIC 331511), these
subsectors are practically defined by the technologies they use. This suggests
that differences in energy use between such subsectors are related to differences
in the technologies employed.

To illuminate the relation between energy and technology, consider the defi-
nitional statement that energy per capita (E,.) is equal to total energy consump-
tion (E) divided by population (P):

E.=— (2.3)

Let us now define N as the total number of energy converters in society. By
multiplying by N/N, we can rearrange equation 2.3 to give:

E,. = EN 2.4
PN P '

Equation 2.4 indicates that energy use per capita is a function both of technolog-

ical scale (E/N, average capacity per energy converter) and technological density

(N /P, the number energy converters per capita).

In terms of social coordination, there is a fundamental difference between
increasing energy consumption through technological density versus technolog-
ical scale: the former is a decentralized process, while the latter requires central-
ization. Increasing energy use per capita through technological density involves
independent changes in the behaviour of individuals, meaning it is an atom-
istic process. However, increasing energy consumption through technological
scale requires the centralization of resources and human labor. Thus, it requires
increases in social coordination.

As an example of a technological density process, consider the spread of
household appliances (which are a type of end-use energy converter). The
invention and widespread adoption of technologies such as the refrigerator,
washer, dryer, microwave oven, and dishwasher vastly increased the number of
energy converters per capita. At least on the consumer end (not the production
end) this process was highly decentralized — individuals independently added
more electronic devices to their lives.

As an example of a technological scale process, consider the changing scale
of the industrial technologies shown in Table 2.1. Relative to their early pro-
totypes, these technologies have undergone increases in scale by factors of one
hundred (tanker ships) to factors of over a million (electric power plants). These
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Table 2.1: Scale Increase of Various Industrial Technologies

Type Early Prototype | Largest Today | Unit Scaling Factor
Electric Power Plant 0.0125 2 2500 | megawatts 1.80 x 10°
Oil Refinery 5.5 1 240 000 | barrels per day 2.24 x 10°
Aluminium Smelter 5.7 1 060 000 | tonnes per year 1.86 x 10°
Internal Combustion Engine 0.75 107 390 | horsepower 1.43 x 10°
Mining Excavator 380 2 324 0000 | cubic meters per day 6.12 x 10*
Blast Furnace 0.3 5500 | cubic meters 1.83 x 10*
Tanker Ship 1809 260 859 | gross tonnage 1.44 x 102

This table shows the size of 7 selected industrial technologies at their earliest stage of
development (‘Early Prototype’) and at the largest scale existing today. Column 5 shows
the scaling factor between the largest and early technologies (largest/early). Technolo-
gies are ranked in descending order of scaling factor. For data sources, see Appendix
A.l.

changes in technological scale necessarily involve the increasing coordination of
human labor. For instance, the largest oil refinery in the world, located in Jamna-
gar, India, employs 2500 people on site [50]. Rather than acting autonomously
(like the users of consumer electronics), these individuals must coordinate their
actions over a wide range of different tasks. This suggests that increases in tech-
nological scale require an increase in social coordination.

But to what degree are increases in energy use per capita actually achieved
through increases in technological scale? Given the complexity of technological
change, this question is difficult to answer at a general level (for all technolo-
gies). Instead of a general test of hypothesis A, I present here a case study
of electricity production and consumption in the United States (Fig. 2.5A-B).
The results of this case study indicate that increases in technological scale have
played an important role in meeting increases in per capita electricity use over
the last century.

Figure 2.5A shows how the indexed change in US electricity use per capita
relates to the indexed change in mean power plant size (as measured by name-
plate capacity). Over the last 100 years, the two series tracked together quite
closely, with both electricity use and power plant size increasing rapidly between
1920 and 1980 and plateauing thereafter. How important was this change in
technological scale for meeting per capita demand? To answer this question,
Figure 2.5B plots the indexed ratio of mean power plant size to electricity use
per capita. This ratio indicates the fraction of electricity use per capita growth
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Figure 2.5: Technological Scale and Social Coordination in Electricity Gen-
eration

Panel A shows the time-series relation between the mean capacity of US power plants
and US electricity use per capita. Both series are indexed to 1 in the year 1920 in order
to show relative growth. Power plants tend to get larger as electricity use per capita
increases increases. Panel B shows the fraction of US per capita electricity use growth
(since 1920) that was met by increases in mean plant size. The dashed line indicates the
mean over the period 1920-2015, while the shaded region shows the standard deviation.
Panel C shows the relation between power plant capacity and the estimated construction
labor time. The entire range of electricity generation technology is included in this
plot — from the smallest gasoline generators to the largest hydroelectric power plants.
Different primary energy sources are indicated by color. Data is modelled with a power
law. Grey regions indicate the 99% confidence region of the regression. For sources and
methodology, see Appendix A.1.
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that was met by increases in power plant capacity. Between 1920 and 2015, in-
creases in power plant capacity accounted for roughly half of the total increase
in electricity use per capita.

In the US electricity generation sector, increases in technological scale ob-
viously played a major role in meeting increases in per capita electricity con-
sumption. Was this increase in scale accompanied by a corresponding increases
in the scale of social coordination (hypothesis B)? Answering this questions re-
quires that we first define what we mean by the ‘scale’ of social coordination,
and specify how this relates to a given technology.

I define the ‘scale’ of social coordination as the number of people required to
construct, maintain, and operate a specific technology. For measurement pur-
poses, however, I limit my analysis only to construction labor time. This decision
is driven primarily by data availability (and lack thereof). For the most part,
published power plant data focuses almost exclusively on costs, and primarily
on the cost of construction. Fortunately, with a few simplifying assumptions,
construction cost data can be used to estimate construction labor time. I use
this latter metric to quantify the scale of social coordination associated with a
given power plant.

To estimate construction labor time from costs, I first note that by the rules of
double-entry accounting, all costs eventually become someone’s income. If we
assume that all income accrues to labor (i.e. we neglect capitalist income) then
we can divide the total cost of a project by an estimate of the average wage to
obtain a rough estimate of the total labor time involved. I use GDP per capita as
a measure of average income, giving equation 2.5 as my method for estimating
labor time.

Total Cost
Labor Time & ——— ~05 (2.5)

GDP per capita

Although this method contains some implicit bias/error, I show in Appendix A.7
that it is unlikely that this bias/error affects the integrity of the results (largely
due to the vast size range of power plant studied here).

Figure 2.5C applies this method to estimate the construction labor time of
approximately 500 different power plants and generators. The capacity of these
plants/generators ranges over 7 orders of magnitude — from the smallest gas-
powered generator (1000 watts) to the largest hydroelectric dams (the 22.5
gigawatt Three Gorges Dam). Different energy sources are indicated by color.
The results show a strong scaling relation between plant capacity and construc-
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tion labor time. This indicates that the scale of social coordination necessary to
build a power plant is strongly related to the plant’s energy conversion capacity.

To summarize, our case study of the electricity generation sector is consis-
tent with both hypothesis A and B. We find that increases in power plant scale
have played an important role in meeting increases in US per capita electric-
ity consumption (hypothesis A). Furthermore, we find that power plant size is
strongly related to construction labor time — our measure of the scale of social
coordination (hypothesis B).

Admittedly, a case study of a single technology represents limited evidence.
However, the vast scaling of the other technologies shown in Table 2.1 indicates
that this line of reasoning has promise. To continue my arguments, I will assume
that the findings of this case study can be generalized to many other technolo-
gies. The result (we assume) is a that increases in energy consumption require
a generalized increase in the scale of human social coordination. The question,
then, is how is this coordination accomplished?

2.4.2 Social Coordination and Human Biology

Social coordination can conceivably be achieved in many different ways (cus-
toms, markets, institutions, etc.). Thus, an increase in social coordination does
not necessarily imply an increase in firm and government size. Why, then, have
these institutions increased in size as energy consumption increases? Hypothe-
ses C-E propose a chain of reasoning explaining why institutions are the most
effective way of organizing large groups of people. The key to this reasoning is
hypothesis C: humans have a limited ability to maintain social relations.

The evidence for this hypothesis comes primarily from the work of anthro-
pologist Robin Dunbar, who has uncovered a startling relation between primate
brain size and mean group size [7]: primate species with larger brains (as mea-
sured by the relative size of the neocortex) tend to live in larger groups. Dun-
bar has developed this finding into what he calls the social brain hypothesis:
“primates evolved large brains to manage their unusually complex social sys-
tem[s]” [49].

The implication of Dunbar’s findings is that the size of the human brain places
limitations on the number of social relations that an individual is able to main-
tain. Dunbar uses his primate data to predict a mean human group size of about
150. While this number should be considered exploratory, Dunbar notes that
early egalitarian societies had group sizes around this order of magnitude [51].

A key feature of egalitarian organization is that any member of a group may
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maintain relations with any other member of the group. Thus, the number of
possible social relations increases linearly with group size. Given the hypothe-
sized limitations in the human ability to maintain social relations, it follows that
egalitarian social organization is not an effective method for coordinating large
numbers of people.

One way of increasing group size beyond Dunbar’s number is to organize
groups in a way that limits human interaction. Turchin and Gavrilets note that
this is a key feature of social hierarchies, which are characterized by a treelike
chain of command [8]. Within a hierarchy an individual must maintain social
relations only with his direct superior and direct inferiors. Thus, hierarchy al-
lows group size to grow without any corresponding increase in the number of
human relations (hypothesis D).

As evidence for this line of reasoning, Turchin and Gavrilets demonstrate that
a strong correlation exists between the population of historical agrarian empires
and the number of administrative (hierarchical) levels within their respective
governments. Similarly, Hamilton et al. find a strong relation between popu-
lation size and the number of hierarchical levels with various hunter-gatherer
societies [52]. This evidence suggests that social hierarchy is a common tool
used for increasing the scale of social coordination.

2.4.3 Hierarchy and Institution Size

Social hierarchies have taken many different forms at different points in human
history. For instance, in many pre-state societies, social hierarchy took the form
of the chiefdom. In middle-ages Europe, the feudal manor was the principle unit
of hierarchy. In the modern era, I argue that business firms and governments
are the principle unit of social hierarchy (hypothesis E). To test this hypothesis,
I focus only on firms.

The implication of hypothesis E is that increasing firm size constitutes an
investment in social hierarchy. If this reasoning is correct, then mean firm size
should be an indicator of the relative ‘top heaviness’ of a society. Why? Hier-
archies tend to become more top heavy as they become larger — the fraction
of individuals in the upper echelons tends to grow as the size of the hierarchy
increases. Thus, if firms are the modern embodiment of social hierarchy, then
mean firm size should be related to the relative size of the upper social echelon.

Since the upper echelons of a hierarchy are almost exclusively involved in
managing the activities of other people, it seems sensible to use the management
profession as a metric for the size of this top cohort. Thus, if hypothesis E is
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Figure 2.6: The Growth of Management as a Function of the Firm Size Dis-

tribution

This figure graphically demonstrates how the management fraction increases with firm

size (assuming firms are ‘ideal hierarchies’). Firms are indicated by boxes (with the

exception of single-person firms) with a worker’s hierarchical position shown vertically.

The span of control — defined as the size ratio between adjacent hierarchical levels —

is constant for all firms. In this picture, the span of control is 2. Managers (red) are

assumed to be all individuals in and above the third hierarchical level. To maintain

simplicity, this graphic does not use a power law firm size distribution.

correct, we expect that increases in mean firm size should be associated with an

increase in the employment share of managers.

To refine this prediction, I develop a hierarchical firm model of society (Fig.

2.6) based on the following assumptions:

1. All firms are ‘ideal’ hierarchies with a single span of control.

2. All individuals in and above the third hierarchical level are consid-

ered ‘managers’.

3. The firm size distribution is a power law.

Why assume that management begins at the third hierarchical level? Ob-

viously, individuals within the lowest hierarchical level have no management

responsibilities. Those in the second hierarchical level can be thought of as
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A. Managers vs. Firm Size (ISCO-88)

B. Managers vs. Firm Size (ISCO-1968)

Data Sources

Figure 2.7: Testing the Hierarchical Model of the Firm Using Managment
Share of Total Employment

Panels A and B plot the country-level relation between the management fraction and
mean firm size. Modelled data is also shown in the background, with the span of con-
trol indicated by color. Panels A and B use different (incommensurable) classification
methodologies for ‘management’. Panel A uses ISCO-88 (which includes legislators,
senior officials and managers) while panel B uses ISCO-1968 (which includes adminis-
trative and managerial workers). Error bars indicate the 95% confidence intervals for
mean firm size. Panel C compares the span of control range from the model to the span
distribution found by 12 different empirical studies. Red boxplots indicate case studies,
and show the span of control distribution within a single firm. Blue boxplots indicate
aggregate studies and show the span of control distribution across many different firms.
The span of control distribution across all 12 studies is shown on the right. For sources
and methodology, see Appendix A.1.
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‘working supervisors’ — individuals who have some supervisory responsibilities
but who spend a majority of their time engaged in ‘production’ [53]. I assume
that individuals in and above the third hierarchical level are devoted mostly to
managing the work of others.

This model predicts that the management fraction of employment should
grow non-linearly with firm size, eventually approaching an asymptote defined
only by the span of control. If the span of control is s, then the asymptote occurs
at 1/s% (see Appendix A.8 for the details of this calculation).

In Figure 2.7 I test this model at the international level. Figure 2.7A and
2.7B plot the country-level relation between the management fraction of em-
ployment versus mean firm size (the two plots show different occupation classi-
fication regimes). Empirical data is shown in black, while model predictions are
shown in the background with the span of control indicated by color. Different
mean firm sizes are produced by varying the exponent of the firm size power
law distribution (for a technical discussion of this model, see Appendix A.8).

The model nicely reproduces the observed relation between mean firm size
and the management fraction of employment. However, this fit is achieved by
freely manipulating the span of control parameter. Thus, it is important to check
that the modelled span of control range is consistent with the span range for real
firms.

Ideally we would be able compare the span range of the model to the span
distribution of a large, global sample of firms. Unfortunately, data constraints
make this impossible. Due to the proprietary nature of firm personnel data, only
a handful of studies have analyzed firm hierarchies. Figure 2.7C shows data
from 12 such studies that together sample firms from 7 different nations (Den-
mark, Japan, Netherlands, Portugal, the United Kingdom, the United States, and
Sweden). The resulting firm sample gives relatively good coverage of wealthy
nations, but unfortunately does not include any firms from developing countries
(due to the lack of available studies). For a summary of the data sources, see
Appendix A.1.

Boxplots in Figure 2.7C correspond to the span of control range found by
each study. Note that the data is a mixture of case studies of single firms and
aggregate studies that analyze the structure of many different firms. While these
aggregate studies give better scope than the case studies, many focus only on
the upper levels of the hierarchy (where data is more easily obtained). The
important finding in Fig. 2.7C is that the model’s fitted span of control range is
consistent with the available empirical data.

To summarize these findings, a simple hierarchical firm model of society is
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able to replicate the observed relation between mean firm size and the manage-
ment share of employment. The changes in mean firm size are achieved by vary-
ing the exponent of a firm size power law distribution, while the management
fraction of employment is fitted by ‘tuning’ the span of control range (assumed
to be the same both within and between all modelled firms). Importantly, the
resulting fitted span range is consistent with the existing empirical data on the
internal structure of the firm. The success of this model gives support to hy-
pothesis E, and suggests that increases in mean firm size are characteristic of a
generalized increase in social hierarchy.

2.4.4 Causality

I have proposed hypotheses A-E as a chain of reasoning connecting energy con-
sumption to institution size. But which way does causation run? Do increases in
energy consumption cause institutions to become larger, or is the reverse true?
As I discuss below, it seems likely that causation runs in both directions.

Although hypotheses A-E are framed in terms of increases in energy use (and
institution size), I think that a discussion of causation is clearer when framed
in terms of constraints and decline. For instance, I think it must be the case
that energy constraints place limits on institution size. This is for the simple
reason that energy conversion technology is useless without an energy input. I
have proposed that large institutions provide the social coordination necessary
to build and operate large technologies. But without sufficient energy input,
these technologies cannot be operated, and the institution’s raison d’étre ceases
to exist. Imagine how long a large steel firm would stay in business if there was
not enough coke to fuel its large blast furnaces. This line of thinking implies
that a decline in energy consumption (due to scarcity) can cause a decline in
institution size.

However, recent history (the collapse of the Soviet Union) suggests that
causality can operate in the reverse direction. Figure 2.8 shows energy and gov-
ernment employment share trends in six nation-states that emerged after the
dissolution of the USSR. In the aftermath of the Soviet collapse, these six coun-
tries experienced drastic reductions in both government size and energy use.
During this period, there was no global energy shortage, meaning biophysical
energy constraints can likely be ruled out as a causal factor. Instead, it seems
likely that institutional collapse is the driving factor here.

This case is illustrative because the Soviet economy relied on an unusually
high degree of government control of production, placing an enormous amount
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Figure 2.8: A Case Study in Causality: The Collapse of the Soviet Union

This figure tracks the path through time of six nations that emerged after the collapse
of the Soviet Union (in 1990-91). As the collapse unfolded, the fraction of people em-
ployed by the government shrank rapidly, as did energy use per capita. Since the USSR
collapse was an institutional crisis (not an energy crisis), this suggests that at least in
this case, causality runs from institution size to energy consumption.

of power in the hands of a single institution. Not surprisingly, the collapse of
this institution led to social chaos and widespread economic decline. I think
this shows quite clearly that institutional collapse can cause a decline in energy
consumption.

The argument that causation can operate in both directions suggests that
energy use and institution size exhibit a feedback relation (rather than linear
causality). One possible avenue for furthering this research is to use systems
modelling. Ugo Bardi has shown that a simple adaptation of the Lotka—Volterra
equations can be used to model the relation between energy extraction and a
technological stock [54]. A plausible line of future research would be to add
institution size to this type of model.

It is also important to note that changes in energy use and institution size
occur alongside other social changes, the two most obvious being urbanization
and changes in sector composition [35]. It seems likely that these phenomena
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are all interrelated — part of a complex process of social change accompanying
changes in energy consumption. In Appendix A.9, I use an adaptation of the
hierarchical firm model (used in Fig. 2.7) to explore the institution size con-
straints that are inherent in the sectoral composition of agrarian societies. The
results offer a promising way of broadening our understanding of why energy
use is related to institution size.

2.5 Conclusions

All life on earth is united by a common struggle — a “struggle for free energy
available for work” [55]. The ability to harness energy places key constraints
on the structure of life, from the level of the cell [56], to the organism [57,58],
to the ecosystem [59]. Within this unifying context, it seems plausible that the
structure of human society ought to be related to the ability to harness energy.

Based on this line of reasoning, a branch of scholarship has emerged that
studies the role of energy in human societies [36,60-65]. However, to my knowl-
edge, this paper is the first to explicitly connect energy use with institution size.
This connection is important because it is not easily explained by existing institu-
tion size theories, which focus mostly on the monetary incentives for institution
growth.

I have offered a new theory of institution size that is rooted in human biol-
ogy, and the theorized limitations of our ability to maintain social relations. I
have proposed that institutions (firms and governments) are social hierarchies
that serve to increase the scale of social coordination beyond that which is pos-
sible through egalitarian relations. I have argued that increases in energy con-
sumption require a general increase in the scale of social coordination, and that
increases in technological scale are a plausible reason for this connection. There
is, of course, no need for increases in technological scale to be the only reason
why social coordination increases with energy use — it is simply the easiest to
study.

An important prediction of this theory is that increases in energy consump-
tion are associated with a general increase in social hierarchy, meaning power
is concentrated in the hands of fewer and fewer people. Although this starkly
contradicts neoclassical economic theory, it is consistent with the power-based
approach to political economy offered by Nitzan and Bichler [17]. If concen-
trations of power are at the heart of increases in energy consumption, then the
theory developed here may be useful for studying a broad range of modern po-
litical economic phenomena.
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Chapter 3

Evidence for a Power Theory of Personal Income
Distribution

Abstract

This paper proposes a new ‘power theory’ of personal income distribution. I
hypothesize that income is most strongly determined by hierarchical power —
which I define as the number of subordinates under one’s control. Using this
definition, I find that relative income within firms scales strongly with hierar-
chical power. I also find that hierarchical power has a stronger effect on income
than any other factor for which data is available. I conclude that this is evidence
for a power theory of personal income distribution.

3.1 Introduction

Over the last decade, concerns about income inequality have risen to the fore-
front of public attention. As testament to this interest, Thomas Piketty’s ex-
pansive treatise on inequality, Capital in the Twenty-First Century, became an
unlikely best seller when it was published in 2014. Due in no small part to the
work of Piketty and colleagues [1-5], empirical study of income inequality has
flourished. But this plethora of new data has not led to a corresponding theoret-
ical revolution.

The problem, I believe, is an unwillingness to question and test the basic
assumptions on which current theory rests. Most theories of personal income
distribution are deeply wedded to the assumption that income is proportional to
productivity. However, this approach has a simple, but little discussed problem:
income is distributed far more unequally than documented differentials in hu-
man labor productivity. But if not productivity, then what explains differentials
in income?

I hypothesize that personal income is explained most strongly by hierarchical
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power, as manifested by one’s rank in an institutional hierarchy. Using the com-
mon definition of power as the ‘ability to influence or control others’, I measure
hierarchical power in terms of the number of subordinates under an individual’s
control. From this definition, it follows that power, unlike productivity, tends to
be very unequally distributed within hierarchies — a natural consequence of the
tree-like chain of command that concentrates control at the top.

I test the power-income hypothesis in two ways. First, using the available
firm case study data, I look for correlation between income and my metric for
hierarchical power. I find that relative income within firms is strongly correlated
with hierarchical power. I also find a strong correlation between changes in
income and changes in hierarchical power. Second, I test the strength of the
power-income effect against a wide range of other income-affecting factors. I
find that grouping individuals by hierarchical rank has the strongest effect on
income. I conclude that this is evidence for a power theory of personal income
distribution.

The paper is organized into the following parts. In section 3.2, I review and
critique existing theories of personal income distribution, and summarize the
key failings of the dominant ‘productivist’ approach. In section 3.3, I outline
the principles and motivations behind my proposed power theory of income dis-
tribution. In section 3.4, I test the power-income hypothesis against empirical
evidence. All methods and sources are documented in the Appendix.

3.2 Theories of Personal Income Distribution

My reading of the history of personal income distribution theory is that the field
has struggled to meet the following two mutually contradictory goals:

1. Address and explain the ‘Galton-Pareto’ paradox;
2. Maintain consistency with prevailing theories of functional income
distribution.

The ‘Galton-Pareto paradox’ refers to the large discrepancy between the ob-
served distribution of human abilities and the observed distribution of income.
The former was first documented by Francis Galton [6], who found that human
abilities were normally distributed, and hence quite equal. The latter was first
documented by Vilfredo Pareto [7], who found that income distributions were
highly skewed and unequal.

Following the findings of Galton and Pareto, political economists have spent
a century struggling to reconcile these two facts [8]. The process has been
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made difficult primarily because the two dominant theories of functional (class-
based) income distribution assume a connection between individual productivity
(hence ability) and income.

At the present time, two main approaches to personal income distribution
theory exist: the stochastic and the productivist approach. The stochastic school
solves the Galton-Pareto paradox by ignoring prevailing theories of function in-
come distribution. In contrast, the productivist school purports to both resolve
the Galton-Pareto paradox and maintain consistency with the rest of economic
theory. However, a closer look reveals that this ‘success’ relies on untestable
assumptions and circular logic. I review both theories below.

3.2.1 Stochastic Theories

The discrepancy between Galton and Pareto’s findings is a paradox only if one
expects that income should be somehow related to ability. Clearly the simplest
resolution is to assume that ability plays a negligible role in determining income.
This is precisely the road taken by stochastic models, which explain income dis-
tribution in terms of random events that have little (if anything) to do with the
characteristics of individuals.

In 1953, David Champernowne demonstrated that a simple statistical process
could be used to explain the ‘Pareto’ (or power law) distribution [9]. In this
model, individuals are subjected to a series of random, exogenous ‘shocks’ that
perturb their income. Over time, this process leads to an equilibrium power
law distribution. Champernowne’s model was later recognized to be part of a
general class of interrelated models in which ‘multiplicative’ randomness is the
generative mechanism for a skewed distribution [10-14].

More recently, econophysicists have used this stochastic line of thinking to
draw explicit parallels between the distribution of income and the distribution of
kinetic energy in gases. These kinetic exchange models explain income distribu-
tions in terms of the random exchange of money between individuals [15-18].
Under the assumption that money is conserved, kinetic exchange models gener-
ate distributions of income that closely resemble those in the real world.

Despite their successes, stochastic models have been mostly ignored by the
economics profession. One reason is that the assumptions underlying this type
of theory (especially kinetic exchange models) are often unrealistic [19]. Ki-
netic exchange models imply a world in which money is conserved for all time,
nothing is ever produced, there are no groups, institutions or classes of people,
and the world exists in static equilibrium.



Theories of Personal Income Distribution 54

However, a more insidious reason that stochastic models have been ignored
is that they are inconsistent with the prevailing theories of functional income
distribution, and the latter form the ‘hard core’ of political economic theory.

3.2.2 Productivist Theories

The discipline of political economy essentially arose in response to questions
about class-based (or functional) income distribution. As David Ricardo saw
it, the role of political economy was to “determine the laws” that regulate the
distribution of income between the “classes of the community” [20].

Out of the 19th century debate over these laws, two great schools of thought
merged — Marxist and neoclassical. Over the following century, virtually all
economic theory was built on top of either Marxist or neoclassical assumptions
about income distribution. The result is that if a new theory of personal income
distribution contradicts these prevailing theories of functional income distribu-
tion, accepting the new theory logically requires discarding not only the func-
tional income distribution theory, but a large part of political economic theory
as well. Perhaps understandably, economists have hesitated to take this road.
Instead, they have largely opted for personal income distribution theories that
prioritize consistency with the rest of economic thought.

Although Marxist and neoclassical schools are usually positioned in oppo-
sition to one another, they both posit a similar link between productivity and
income [21]. In neoclassical theory, income is attributed to marginal productiv-
ity — the incremental increase in output caused by the incremental increase in
inputs of capital/labor [22,23]. Thus, if a capitalist makes more than a worker,
it is because an additional unit of his ‘capital’ adds more to output than an ad-
ditional unit of the worker’s labor.

The logical implication of this theory is that income differences between
workers — who all earn labor income — must be due to differences in individual
productivity. Out of this line of reasoning came human capital theory, which at-
tributes workers’ productivity to some internal stock of ‘human capital’ [24-26].

Unlike neoclassical theory, Marxist theory posits that labor is the sole pro-
ducer of value [27]. Therefore, both labor and capitalist income ultimately stem
from workers’ productivity. The Marxist twist is to treat capitalist income as par-
asitic — the result of the expropriation of surplus value created by workers. The
relative balance between labor and capitalist income is then a function of the
‘degree of exploitation’ of workers. But when it comes to income distribution
among workers, Marxists come to conclusions that are very similar to their neo-
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classical counterparts. Since labor is the sole source of value, skilled workers
who earn more than unskilled workers must somehow be more productive [28].

This productivity-income hypothesis has made it difficult for neoclassical and
Marxist theories to address the Galton-Pareto paradox. Since individual produc-
tivity is presumably related to ability, one cannot take the easy road and simply
negate any relation between ability and income. Instead, one must explain why
productivity is as unequally distributed as income, but ability is not.

The most common resolution to the Galton-Pareto paradox is to assume that
different abilities, each normally distributed, somehow interact to have a mul-
tiplicative effect on productivity [29,30]. This multiplicative effect can be ex-
pressed as a production function in which a worker’s output (Y) is an expo-
nential function of the sum of different abilities (a;): Y = e®*%*-*%_  This
hypothesis is central to human capital theory, which proposes that investments
in human capital yield multiplicative returns to productivity [24,25].

But is this actually the case? Is productivity as unequally distributed as in-
come? Unfortunately, this question is not as easily answered as it might seem.
The problem is this: how do we compare the productivity of different workers
who have qualitatively different outputs? For instance, how can we determine if
a farmer, who produces potatoes, is more productive than a composer, who pro-
duces music? Any such comparison of qualitatively different outputs inevitably
requires choosing a common unit of analysis. But the choice of this unit is sub-
jective, and different units will lead to different results. The logical implication
is that there are no objective grounds for comparing the productivity of work-
ers with qualitatively different types of output. The same problem occurs when
attempting to measure the productivity of capital: one can only compare cap-
italists with exactly the same output. There are other measurement problems
inherent in marginal productivity theory. These include the inability to objec-
tively measure capital [21,32,33], as well as the inability to isolate the effect on
output caused by changes in capital versus changes in labor (see Pullen [34] for
a good review).

Taking these measurement problems seriously means that one can compare
productivity only between workers who have exactly the same output. [31] have
compiled data that does exactly that — they report differences in productivity
among workers doing the same task. In Figure 3.1, I take this data and convert
it into a Gini index of ‘productivity inequality’ so that it is directly comparable
to income inequality within nation states. This evidence indicates that differ-
ences in productivity are systematically too small to account for observed levels
of inequality.
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Figure 3.1: Labor Productivity Inequality vs. Income Inequality

Using a Gini index, this figure compares the inequality of worker productiv-
ity to income inequality within nation-states. Data for the former comes from
Hunter et al. [31], who report the coefficient of variation of productivity among
workers conducting the same task. Data plotted here shows the distribution of
productivity inequality for 55 different tasks. I convert Hunter’s data to a Gini
index by assuming that worker productivity is lognormally distributed. The
Gini index (G) of a lognormal distribution with a coefficient of variation c,, is
G = erf(% \/W). I plot the resulting distribution against the distribu-
tion of Gini indexes of income inequality for all country-year observations in
the World Bank database (series SI.POV.GINI).
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However, the link between productivity and income is not typically measured
in such restrictive terms. Instead, the standard practice is to adopt monetary
value as a common unit of comparison for measuring different outputs. Thus,
labor productivity is generally measured in terms of sales or value-added per
worker [35-41]. The problem with this approach is that it relies on circular
logic. According to theory, income is explained by productivity. But when the
theory is tested, productivity is measured in terms of income. And based purely
on accounting principles, we expect wages to be correlated with sales/value-
added per worker.

Double entry accounting principles dictate that the value-added (Y) of a firm
is equivalent to the sum of all wages/salaries (W) and capitalist income (K). If
we divide by the number of workers (L), we find that value-added per worker
is equivalent to the average wage (w = W /L) plus K/L:

Y _W+K_ K

—w+— 3.1
[ ) G-

Sales (S) are similar, but include an additional non-labor cost term (C):

S W+K+C _ K+C

———=w+
L L L

(3.2)

Thus, if we look for correlation between average wage (w) and value-added/sales
per worker (Y /L or S/L), we will surely find it, since simple accounting defini-
tions dictate that the former is a major component of the later.

To summarize, existing theories of personal income distribution are plagued
by fundamental problems. The two main schools reviewed here — stochastic
and productivists — both have major shortcomings. The stochastic approach,
while interesting from a mathematical standpoint, makes assumptions that are
unrealistic and have little to do with the real world. The productivist school, on
the other hand, has waged an uphill battle with empirical evidence. Its successes
have been achieved by basing empirical tests on circular logic.

I argue that a new approach is needed. Rather than focus on productivity
(or stochastic interactions) I propose that personal income is best explained by
the hierarchical power structure of institutions.
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3.3 A Hierarchical Power Theory of Personal Income Distribu-
tion

The premise of this paper is that income distribution can be explained primarily
in terms of differentials in hierarchical power. But before diving into the specifics
of this theory, I want to provide a rationale based on the big picture of human
history. Why? There is nothing like looking at the past to gain fresh insight into
the present. Let’s ask a simple question: what aspects of human history suggest
that hierarchical power might affect how we distribute resources (which is what
income distribution is all about).

Let’s begin with our deep history — the evolutionary backdrop of the human
species. Humans are but one of a wide variety of social mammals, virtually all
of which form dominance hierarchies, or ‘pecking orders’ [42-47]. A key char-
acteristic of these dominance hierarchies is that high social rank is associated
with preferential access to resources, particularly sexual mates [48-52].

Of course, human behavior is far more complex than even the most intelli-
gent (non-human) primates. Just because we evolved from hierarchy-forming
animals does not necessarily mean that hierarchical rank still plays a role in how
we divide up the pie. However, there is good evidence that humans do have an
instinctual behavior towards hierarchy formation. Several studies have shown
that children and adolescents spontaneously form dominance hierarchies when
placed into small groups [53-55]. Other studies have shown that, like other so-
cial mammals, human reproductive success increases with social status [56,57].
There is even evidence that social status at birth is epigenetically imprinted on
human DNA [58] — something that also occurs in Rhesus monkeys [59]. Given
our evolutionary heritage, it seems plausible that hierarchy plays a role in the
way humans distribute resources.

Another reason to suspect that resource distribution has to do with hierarchy
and power is the ubiquity of inherited status in human history. It is hard to justify
the wealth of a hereditary aristocracy as stemming from anything but power and
privilege. Interestingly, inherited status has surprisingly deep historical roots.
There is tentative archaeological evidence for inherited status beginning in the
neolithic era [60-62], and widespread evidence beginning in the bronze age
around 5000 years ago [63-67]. It is around this time that the first Egyptian
dynasty formed [68], followed later by dynasties in Mesopotamia [69] and China
[70].

Since then, as Gaetano Mosca observes, the existence of a hereditary ruling
class has been the norm:



A Hierarchical Power Theory of Personal Income Distribution 59

There is practically no country of longstanding civilization that has not had a
hereditary aristocracy at one period or another in its history. We find hereditary
nobilities during certain periods in China and ancient Egypt, in India, in Greece
before the wars with the Medes, in ancient Rome, among the Slays, among the
Latins and Germans of the Middle Ages, in Mexico at the time of the Discovery
and in Japan down to a few years ago. [71]

But while history may be sordid, there is always the possibility that mod-
ern societies have made a clean break with the past. Power may have played a
central role in the distribution of resources in past societies, but in modern so-
cieties reciprocal exchange is what matters most. This is the story that emerged
in the writings of Adam Smith [72] and was codified into neoclassical theory
by Jevons, Menger and Walras [73-75]. To paraphrase George Orwell [76],
this is now the prevailing orthodoxy that most right-thinking economists accept
without question.

But what if there has not been a clean break with the past? What if power
still plays an important role in shaping resource distribution? A wide variety of
scholars have argued that this is the case. A non-exhaustive list would include
[21,77-89]. These scholars argue that power plays a central role in shaping
income distribution.

If there is to be a power-based theory of income distribution, what should it
look like? According to Christopher Brown:

[A] theory of distribution should be indistinguishable from a theory of
power. A satisfactory theory of power would, beyond defining what power
is, elucidate principles to explain how power is established, enlarged or di-
minished, protected and perpetuated, redistributed, exercised, and rendered
legitimate or illegitimate. [90]

A full-fledged theory of power is a tall order. In this paper, I narrow the
focus to look only at hierarchical power in the context of personal income dis-
tribution. My ideas stem from the work of Simon [91] and Lydall [92], who
independently proposed income distribution models based on the hierarchical
structure of firms.

The focus of Simon and Lydall’s work is the branching nature of institutional
hierarchies, in which each superior controls multiple subordinates. This struc-
ture is unique to humans. All other animals form linear hierarchies — an ordinal
ranking from top to bottom. The most important feature of a branching hier-
archy is that it concentrates power in the hands of the few. I propose that this
concentration of hierarchical power can be used to explain income inequality.

The main theoretical contribution of this paper is to offer a quantifiable def-
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inition of hierarchical power that allows power differentials to be directly com-
pared to income differentials. I test the following hypothesis:

Hypothesis: Income is most strongly determined by hierarchical power, as
measured by the number of subordinates under one’s control.

3.3.1 Measuring Hierarchical Power

What is hierarchical power? 1 define it as the ability to control subordinates
within a hierarchical chain of command. The link between hierarchy and power
is implicit in the etymology of the word ‘hierarchy’ itself, which derives from the
Greek term hierarkhes, meaning ‘sacred ruler’ [93]. In essence, an institutional
hierarchy is a nested set of power relations between a superior (a ruler) and
subordinates (the ruled). It is a control structure that concentrates power at the
top [94]. I propose that one’s power within a social hierarchy is proportional to
the number of subordinates under one’s control. I put this in formula form as:

hierarchical power = number of subordinates + 1 (3.3)

The logic of this equation is that all individuals start at a baseline power of 1,
indicating that they have control over themselves. Power then increases linearly
with the number of subordinates.

If we had access to the exact chain of command structure of an institution,
we could use this definition to measure the power of each individual within
a hierarchy. Unfortunately, chain of command information is rarely available.
Instead, existing case studies report aggregate hierarchical structure only — to-
tal employment by hierarchical level. While we cannot calculate the power of
specific individuals, we can use this data to calculate the average power of all
individuals in a specific hierarchical level:

B,=5,+1 (3.4)

Here P, is the average power of individuals in hierarchical level h, and S,
is the average number of subordinates below these individuals. The average
number of subordinates S, is equal to the sum of employment (E) in all subordi-
nate levels, divided by employment in the level in question. Figure 3.2 shows a
sample calculation, where red individuals occupy the level in question, and blue
individuals are subordinates. Each red individual has 2 direct subordinates, and
4 indirect subordinates, for a total of 6 subordinates. The average hierarchical
power in level three is therefore 7.
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Figure 3.2: Calculating the Average Number of Subordinates

Using summation notation, we can write the following general equation for
the average number of subordinates in hierarchical level h (here h = 1 is the
bottom hierarchical level 1):

S, = Z = (3.5)

Together, equations 3.4 and 3.5 allow us to define and measure the average
power of individuals in an institutional hierarchy.

3.3.2 The Concentration of Power Within Firms

The focus of this paper is the hierarchical structure of business firms, which
are the dominant institutions in capitalist societies. I treat firms as ‘dedicated
hierarchies’ [95]. The premise of my theory is that firm hierarchies concentrate
power, which causes concentrations of income.

But before we look at the relation between power and income, there is a
prior question: how concentrated is hierarchical power within firms? Just as we
can with income inequality, we can use the Gini index to quantify the concen-
tration of hierarchical power within firms. Figure 3.3 shows the distribution of
hierarchical power in a hypothetical firm. In this firm, the Gini index of power
inequality is 0.58. To put this in perspective, if income within this firm was ex-
actly proportional to power, the firm would have income inequality on par with
South Africa (according to World Bank data).

Of course, this is a contrived example. What we really want to know is —
how concentrated is power in real-world firms? I have identified six firm case
studies that provide adequate data to calculate average power by hierarchical
level. These studies (discussed in detail in Appendix B.2) offer a sample of firms
from the United States, Britain, the Netherlands, and Portugal. While a larger
firm sample would be better, the proprietary nature of firm payroll data has
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Figure 3.3: The Distribution of Power Within A Firm

This figure shows how power is distributed within a hypothetical hierarchical firm. The
number above each individual indicates their power, as defined by Eq. 3.4 and 3.5.

proved a major obstacle to empirical research. As a result, data on firm hierar-
chical structure is quite limited.

To calculate power inequality in these case study firms, I first use equations
3.4 and 3.5 to quantify average power by hierarchical level in each firm. I then
assign each member of the firm the average power in their respective hierar-
chical level. This results in a distribution of hierarchical power, from which we
can calculate the Gini index. Figure 3.4 shows the resulting distribution of Gini
indexes of power inequality within these case study firms (each firm-year obser-
vation gets one Gini index).

To compare this concentration of power to concentrations of income, Fig-
ure 3.4 also shows the distribution of income inequality within nation-states
(the same distribution as in Figure 3.1). Interestingly, hierarchical power within
these firms is much more concentrated than income within nation-states. This
suggests that hierarchical power is a good starting point for a theory of income
distribution. If nothing else, it means that a power-based theory will not suffer
from the under-explanation problem that plagues productivist theory.

3.4 Testing the Power-Income Hypothesis

To reiterate, the power-income hypothesis proposes that income is most strongly
determined by hierarchical power, as measured by the number of subordinates
under one’s control. To test this hypothesis, it is helpful to break it down into
two parts:
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Figure 3.4: Income Inequality vs. Power Inequality within Firms

This compares the distribution of income inequality within nation states to the distribu-
tion of hierarchical power inequality within six case study firms. To calculate the dis-
tribution of power, I use equations 3.4-3.5. Firm case study data comes from [96-101]
(for details, see Appendix B.2). The distribution of power inequality is calculated us-
ing Gini indexes for all firm-year observations. The distribution of income inequality
within nation-states is calculated using all countries-year observations in the World Bank
database series SI.POV.GINI.
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Hypothesis A: Relative income within a hierarchy is proportional to
hierarchical power.

Hypothesis B: Hierarchical power affects income more strongly than
any other factor.

Hypothesis A is an important initial test of the power-income hypothesis. If
income within a hierarchy is not significantly correlated with our metric for hi-
erarchical power, then the power-income hypothesis is false. However, even a
substantial correlation is only partial evidence, since many factors other than
power are well-known to strongly affect income (education is the most widely
recognized). Thus, we must go one step further and test if the power-income ef-
fect is stronger than all others. If we find empirical support for both hypotheses A
and B, then we conclude that there is evidence for the power-income hypothesis.

3.4.1 Power-Income Correlation

To test hypothesis A, I look for both a static and a dynamic correlation between
income and hierarchical power. I begin with the static test.

I analyze the correlation between power and income in six case study firms
— the same firms used in section 3.3.2 (for a detailed discussion of these stud-
ies, see Appendix B.2). For each firm in each observation year, I use equations
3.4 and 3.5 to calculate average power by hierarchical level. I then compare av-
erage power to average relative income by hierarchical level. In order to make
comparisons across firms (and across time), I normalize all income data so that
the mean income in the bottom hierarchical level is always equal to 1.

The results of this analysis are shown in Figure 3.5. Each point represents
a single firm-year observation, with the different case-study firms indicated by
color. Although the firm sample is small, the evidence is conclusive: there is
a strong correlation between relative income in our case-study firm hierarchies
and our metric for power.

While Figure 3.5 shows a correlation between static levels of hierarchical
power and pay, it is also important to test for a dynamic correlation. That is,
we want to know if changes in power are related to changes in income when
individuals are promoted/demoted within a firm. I conduct such a test using
the data published by Baker, Gibbs, and Homstrom [97] — the ‘BGH dataset’.
This dataset contains raw personnel data for a large US firm over the years 1969-
1985.

I define a promotion/demotion as any change in an individual’s hierarchical
level. For each such event, we define the fractional change in power (AP) as
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Figure 3.5: Average Income vs. Hierarchical Power Within Case-Study
Firms

This figure shows data from six firm case studies [96-101]. The vertical axis shows
average income within each hierarchical level of the firm (relative to the base level) ,
while the horizontal axis shows our metric for average power, which is equal to one
plus the average number of subordinates below a given hierarchical level (see Eq. 3.4
and 3.5). Each point represents a single firm-year observation, and color indicates the
particular case study. Grey regions around the regression indicate the 95% confidence
region.
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Figure 3.6: Changes in Hierarchical Power and Pay During Intra-Firm Pro-
motions

This figure plots the fractional change in pay (Eq. 3.7) versus the fractional change
in hierarchical power (Eq. 3.6) for individual promotions/demotions in the Baker,
Gibbs, and Holmstrom (BGH) dataset [97]. Each point represents the resulting change
in pay and power of a single individual. Over 16,000 promotion/demotion events
are plotted here. Change in hierarchical level is indicated by color. The grey region
indicates the 95% prediction interval of a log-log regression. The BGH data comes
from an anonymous US firm over the period 1969-1985. The dataset is available at
http://faculty.chicagobooth.edu/michael.gibbs/research/index.html
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the ratio of power after versus power before the promotion/demotion (Eq. 3.6).
An individual’s power is defined by Eq. 3.4. Since we do not know the exact
chain of command, I assign all individuals the average power of their respective
hierarchical level.

AP — pafter

(3.6)
I3 before

For each promotion/demotion, I define the fractional change in income (AI)
as the ratio of income after versus income before the event (Eq. 3.7). In order to
isolate the effect of the promotion from the exogenous effects of inflation and/or
general wage increases, I measure all incomes relative to the firm mean income
(I) in the appropriate year.

_ Iafter/ I_after (3 7)

I before / I before

Figure 3.6 show the results of this dynamic analysis. Here each plotted point
represents the fractional change in pay and power for the promotion/demotion
of a single individual. For the over 16,000 promotions/demotion events ana-
lyzed here, a highly significant correlation exists between changes in power and
changes in individual income.

Interestingly, the correlation holds both for promotions and for demotions,
the latter occurring when an individual drops hierarchical levels. The relative
pay reductions accompanying these demotions are difficult to understand from
a productivist approach. Do these individuals suddenly experience a drastic
reduction in ability/productivity? The evidence in Figure 3.6 suggests a better
explanation: within the BGH firm, pay is largely a function of the power of a
specific hierarchical position, irrespective of the person holding this position.

To conclude, the available evidence is consistent with hypothesis A. Relative
income within firms is both statically and dynamically correlated with hierarchal
power. Having survived this first hurdle, we now move on to test the power-
income effect in the more stringent form of hypothesis B.

3.4.2 The Strength of the Power-Income Effect

Hypothesis B states that hierarchical power affects income more strongly than
any other factor. To test this hypothesis, I use an analysis of variance method
to quantify the income effect of from wide variety of different factors. In order
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Figure 3.7: Analysis of Variance Using the Gini Index

This figure shows an example of the analysis of variance method that uses the Gini index.
A hypothetical 2-group variable (like ‘sex’) is illustrated to have a small effect on income
in panel A and a large effect in panel B. The means of each distribution are indicated by
a dashed line. We use equation 3.8 to define the between-within Gini indicator, Ggy,. A
small effect on income is indicated by a Ggy, that is close to zero, while a large effect is

indicated by a Gy, greater than one.

to make the test as thorough as possible (given data constraints), some data is
model dependent (see the Appendix for a detailed discussion).

Method for Measuring Effect Size

While there are many conceivable ways that hypothesis B could be tested, the
format of available data makes the analysis of variance method the most appro-
priate. This is because many factors that affect income (such as ‘sex’ or ‘race’)
are qualitative variables. Even factors like ‘education’ and ‘age’ that could con-
ceivably be quantitatively measured (in units of time) are typically reported in
qualitative groups such as ‘college graduate’ or ages ‘50-59’. The analysis of
variance (ANOVA) method provides a simple way of determining how strongly
qualitative variables affect income. The essence of this approach is to compare
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between-group income dispersion to within-group income dispersion for a given
factor. The larger the between-group dispersion is relative to the within-group
dispersion, the larger the effect on income.

This approach is most easily understood by way of an example. Figure 3.7
shows a hypothetical example of how a two-group variable like ‘sex’ might affect
income. When the separate income distributions of the two groups are plotted
together, we can clearly see a small effect in Fig. 3.7A and a large effect in Fig.
3.7B. How do we quantify the size of this effect? Most people likely judge the
difference in group means against the dispersion within each group. We might
call this a signal-to-noise ratio, where the ‘signal’ is the difference in group means
and the ‘noise’ is the within-group dispersion. The larger the signal is relative to
the noise, the larger the effect.

The ANOVA method allows us to generalize this concept of effect to more
than two groups. The corresponding signal-to-noise ratio is often called Cohen’s
f2. For this metric, the ‘signal’ is the dispersion between group means, while the
‘noise’ is the dispersion within groups, where dispersion is measured as the sum
of squared differences from the mean [102,103]. While Cohen’s f2 is a common
measure of effect size, its calculation requires either raw data on individual in-
come, or data for within-group variance (or standard deviation). Unfortunately,
this type of data is difficult to obtain. Instead, what is readily available are ag-
gregate statistics reporting within-group Gini indexes. Because of the ubiquity
of the Gini index, I use it to measure effect size.

Similar to Cohen’s f2, my effect size metric is a signal-to-noise ratio (Eq.
3.8). However, rather than the sum of squares, I use the Gini index to measure
both within-group and between-group dispersion. I call this metric the between-
within Gini ratio (Ggy).

Gp
G el (38)
BW G

w
Here Gy is the between-group Gini index (the Gini index of group mean
incomes), while (EW) is the average of all within-group Gini indexes. For a
detailed discussion of the relation between Gg,, and f2 see Appendix B.8.

The value of Gg, can range from O to infinity, with larger values indicating
a larger effect on income (see the example in Fig. 3.7). Of particular interest
is the value Gg,, = 1, which occurs when between-group dispersion is equal to
within-group dispersion. Any factor that produces Gg,, > 1 can be considered
to have a significant impact on income, since inequality between groups is larger
than inequality within groups. However the primary use of the G, metric is not



Testing the Power-Income Hypothesis 70

its absolute value, but its relative value when different income-affecting factors
are compared.

A well-known shortcoming of the Gini index is that it has a downward bias
for small sample sizes. If the sample size is n, the maximum possible Gini index
is:

n—1

Grex = (3.9)
n

Thus a sample size of n = 2 has a maximum Gini index of G;*** = 0.5. This
bias presents a problem for the calculation of the between-group Gini index G,
because the number of groups (n) is often extremely small (i.e. n = 2 for the
factor ‘sex’). While this small n is not really a sample (it is the actual number
of groups), it still causes a bias in the Gini index. The result is that we cannot
safely compare Gz between two income-affecting factors with different numbers
of internal groups.

To correct for this bias, I use the method proposed by George Deltas [104].
The bias-adjusted Gini index (G°¥) is defined by dividing the unadjusted Gini
(G) by the maximum possible Gini (G"**), given the number of internal groups
n:

, G
GV =— (3.10)
Gmax
All between-group Gini calculations in this paper use the adjusted Gini index,
G, However, for notational simplicity I refer to this adjusted between-group

Gini as G for the remainder of the paper.

Some Clarifications on ‘Effect Size’

It is important to clarify that my empirical method measures the effect on in-
come, not the effect on inequality. There is a subtle, but important difference.
In measuring the effect on income, group size is irrelevant. Any factor that has
a strong effect on income (like education) necessarily involves zeroing in on
a small, elite group of people (for instance, a small fraction of the population
has a graduate degree). But the effect on inequality takes group size into con-
sideration. Consider the scenario where all people with a graduate degree are
millionaires, but there are only 10 such people (out of millions). Having/lacking
a graduate degree will have a strong effect on income, but not on inequality. I
hope this gives an intuitive understanding of the difference between the two
types of effect size. For a technical discussion, see Appendix B.8.
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Figure 3.8: Grouping Power By Hierarchical Level

This figure shows my method for grouping individuals by their power. In this figure,
each hierarchy represents a different firm. My proposed groups consist of all individuals
(regardless of firm) that share the same hierarchical level. Groups are indicated by color.

On a different note, readers trained in econometrics will (correctly) observe
that my method for measuring effect-size does not isolate the income-effects of
a given factor. It does not show that, when all other factors are held constant, a
change in factor A by amount x affects income by amount y. I make no attempt
to do this because I think it is the wrong approach. As Keynes long ago argued,
the only conceivable way that an econometric model can isolate an effect is if the
model includes a complete list of causal factors [105]. But since we can never
be sure that our causal list is complete, we can never know if our econometric
model is wrong [106].

My thinking is more pragmatic. Given the complexities of human behavior,
we can likely never isolate a factor to find its ‘true’ effect on income. But we can
rank effect-size with the full understanding that when we measure one factor’s
effect on income, enumerable other factors are included in this measurement.
In the face of enumerable confounding variables, Occam’s razor would suggest
that we simply chose the factor with the largest effect on income and use it to
build a theory.

Grouping Individuals By Hierarchical Level

To test hypothesis B (that hierarchical power affects income more strongly than
any other factor) using an analysis of variance method, we must group individ-
uals into different categories/classes of social power. My method is to group
individuals by hierarchical level across all firms, as illustrated in Figure 3.8.

This method is theoretically attractive because hierarchical level is the princi-
ple determinant of power. If a firm has a constant ‘span of control’ (the number of
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subordinates below each superior), then power will increase exponentially with
hierarchical level. In Figure 3.8, the span of control is constant both within and
between firms. The result is that all individuals in each hierarchical level have the
same power. In the real-world, we would expect this not to be the case. Evidence
from firm case-study data suggests that the span of control varies both within
and between firms (see Fig. 4 and 5 in Appendix B.2). As a result, we still expect
that average power will increase exponentially with hierarchical level, but each
hierarchical level will contain individuals with a range of different power.

While there are other conceivable ways of grouping individuals by power, this
method is both theoretically attractive and practical for empirical analysis. The
available data on firm hierarchies is limited, and the most commonly reported
metric is the distribution of income by hierarchical level.

The Data

To test hypothesis B, I use the 19 different income-affecting factors shown in
Table 3.1. With two exceptions (discussed below), data comes from the United
States. Data sources as well as details about each category are discussed in
Appendix B.1.

Before proceeding with a discussion of the data sources used for income by
hierarchical level, it is worth reviewing why I do not use the same case study
data that was used to test hypothesis A. Testing hypothesis B requires grouping

Table 3.1: Income-Affecting Factors Used to Test Hypothesis B

Geographic Physical Attribute Socioeconomic

Census Block Group Age Education

Census Tract Cognitive Score* Employee vs. Self-Employed
County Race Firm*

Urban vs. Rural Sex Full vs. Part Time

Hierarchical Level*

Home Owner vs. Renter
Occupation

Parents’ Income Percentile

Public vs. Private Sector
Religion

Type of Income (Labor/Property)

* Indicates variables that use model-dependent data (at least in part)
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individuals by hierarchical level across a large number of firms. To be consistent,
the firms should all be in the same country (ideally the United States), and the
observations (that are compared) should be in the same year. The case study
data does not meet these requirements: it is a small sample, with firms from
many different countries with many non-overlapping years. As a result, the case
study data is not useful for testing hypothesis B.

Instead, I use three different sources for estimating income distribution by hi-
erarchical level. The first source is a seminal study by Mueller, Ouimet, and Sim-
intzi [107] that reports income distribution by hierarchical level for 880 United
Kingdom firms over the period 2004-2013. The second source is a study by
Fredrik Heyman [108] that analyzes the pay distribution of the top 4 levels of
management in 560 Swedish firms in the year 1995. Heyman’s data comes with
the caveat that it does not represent all hierarchical levels — just the top four.
For this reason, I mark Heyman’s results with an asterisk.

[ use this non-US data because I am not aware of any equivalent US study that
reports income distribution by hierarchical level over a large number of firms.
While comparing US to UK/Swedish studies is not ideal, I proceed because of
the lack of alternative data. If anything, the UK and Swedish data should lead
to an under-estimate of the power-income effect in the United States. Why?
Both the UK and Sweden have significantly less income inequality than the US
(according to the World Bank, the most recent UK and Swedish Gini indexs are
0.33 and 0.27, while the most recent US Gini index is 0.46). If there is less total
inequality, the potential for between-group inequality is diminished, resulting in
a lower Gy, metric (see Eq. 3.8).

My third source for hierarchical level data is a model that uses the insights
from firm case study data to estimate the hierarchical pay structure of 713 US
firms in the Compustat database (covering the years 1992-2015). This ‘Compus-
tat Model’ is discussed in detail in the Appendix, but I review its core components
here.

The idea of the Compustat Model is that firm case-study data can be used
to make generalizations about the hierarchical employment and pay structure
of firms. Although different firms have differently shaped hierarchies (see Fig.
4 in Appendix B.2), there are underlying regularities shared by all firms. The
following regularities are shown in Fig. 5 in Appendix B.2:

1. The span of control tends to increase with hierarchical level.
2. The ratio of average pay between adjacent hierarchical levels increases by
level.
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Figure 3.9: Visualizing the Compustat Model

This figure visualizes the results of the Compustat Model for selected US firms in the
year 2010. The data and method underlying this model are discussed in detail in the
Appendix. Each pyramid represents a separate firm with volume proportional to total
employment. The vertical axis corresponds to hierarchical level. Income is indicated by
color.




Testing the Power-Income Hypothesis 75

3. Intra-level inequality tends to be constant across all hierarchical levels.

I use these regularities to construct a hierarchical model of the firm (see
Appendix B.3). Given appropriate input data, this model can be used to estimate
income inequality by hierarchical level (across firms). To make this estimate, I
use the Compustat database, which provides the following data for 713 US firms
over the period 1992-2015:

1. Number of Employees
2. Total Staff Expenses
3. CEO Pay

In conjunction with case-study regressions, this Compustat data can be used
to estimate the hierarchical pay structure of individual US firms (see Appendix
B.5 and F). While the details of the model are complex, the core idea is sim-
ple: since the CEO sits at the top of the corporate hierarchy, his/her relative
pay (when compared to the average pay of all employees) gives an indication
of the rate at which income increases by hierarchical level. When paired with
assumptions about the ‘shape’ of the firm (derived from case-study regressions),
the model gives an unambiguous prediction about firm internal pay structure.
Results of the model are visualized in Figure 3.9 for selected firms in 2010.

The skeptical reader may be wondering why, after dismissing the case study
data as not useful for testing hypothesis B, I nonetheless construct a model that
hinges on this very data. The model is useful because the Compustat data (to
which the model is fitted) adds a great deal of new information that is not con-
tained within the case study data itself. The Compustat data adds a large num-
ber of US firms that exist over a continuous time-series, each having a different
size, different mean pay, and different CEO pay ratio. While the case study data
determines the hierarchical shape of all firms, the Compustat data determines
everything else. In Appendix B.7 I analyze the sensitivity of this model to the
case study data. I find that the key metric — the G}, metric for income grouped
by hierarchical level — is relatively robust to changes in case study data.

In addition to income distribution by hierarchical level, I also use the Compu-
stat model to estimate the strength of the firm-income effect (how much working
for different firms affects income). In this case, the Compustat database can be
used to directly measure income inequality between firms, and the model is used
to estimate inequality within each firm. I use this model-dependent data because
I am not aware of any studies that directly measure internal income distributions
of a large sample of firms.
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Results

The results of the analysis of variance test of hypothesis B are shown in Figures
3.10 and 3.11. Figure 3.10 shows the between-within Gini ratio (Ggy,) for our 19
different income-affecting factors. For all factors except religion and cognitive
score, the boxplots indicate the variation of G, over time (typically the last 20
years). For religion, the boxplot range indicates uncertainty in the G, estimate,
while for cognitive score, it indicates variation between different studies.

Figure 3.11 shows the same data, but in a slightly different format. The Gg,
metric consists of a ratio of between-to-within group income dispersion (Eq.
3.8). Figure 3.11 decomposes this ratio and shows the individual components of
the metric — between-group inequality (G,) and within-group inequality (Gy;).
Aside from religion, density plots indicate the distribution of these values over
time (for religion, density plots indicate uncertainty). The important informa-
tion here is the relative position of between-group inequality relative to within-
group inequality.

This test of hypothesis B yields conclusive results: of the 19 different income-
affecting factors tested, hierarchical level has the strongest effect on income.
We can conclude that the available evidence supports hypothesis B: hierarchical
power appears to affect income more strongly than any other factor. Interest-
ingly, the Compustat model and the data from Mueller et al. and Heyman give
Ggy ratios that are similar (although the underlying values of G and G, are
quite different). This may indicate that the strength of the hierarchy-income
effect is consistent across countries that have different levels of inequality.

In addition to the support for the power-income hypothesis, Figures 3.10
and 3.11 reveal a few other notable findings. Firstly, physical attributes (age,
cognitive score, race, and sex) have a relatively insignificant effect on income.
Geographic effects are also quite small, although they become larger as the ge-
ographic area decreases (geographic factors ranked from largest to smallest area
are: county, tract, block group).

Besides hierarchical level, only two other factors have Gy, ratios that are sig-
nificantly greater than 1: labor vs. property income and full vs. part time. The
latter is easily understandable: part-time individuals work significantly fewer
hours than full-time individuals, so we would expect significant income differ-
entials between the two groups. Added to this effect is the fact that part-time
jobs are often in sectors such as retail that have lower wages than in sectors (like
mining) where full-time employment is the norm.

But what should we make about the significant effect of functional income
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Figure 3.10: The Gy Ratio for Different Income-Affecting Factors

This figure shows the results of an analysis of variance test of hypothesis B using the
method outlined in Sec. 3.4.2. According to this hypothesis, hierarchical power should
affect income more strongly than any other factor. The horizontal axis shows the
between-within Gini ratio (Ggy,) defined by Eq. 3.8 (Gj is adjusted for bias using Eq.
3.10). A larger Ggy, indicates a greater effect on income. The box plots indicate the
total range (horizontal line), 25th to 75th percentile range (the box), and the median
(vertical line). With the exception of hierarchical level data from Mueller et al. [107]
and Heyman [108], all data is from the United States. For sources and methods, see
Appendix B.1.

* Includes only top 4 hierarchical levels
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Figure 3.11: The G; and Gy, Index for Different Income-Effecting Factors
This figure shows the distribution of between-group Gini indexes (Gg, the Gini index

of group mean incomes, shown in blue) in relation to the distribution of within-group

Gini indexes (G, average within-group inequality, shown in red). Each panel plots

the results for a different income-affecting factor. With the exception of ‘parent income

percentile’ and ‘religion’, the density curves represent the distribution of data over dif-

ferent years. Panels are sorted by effect size, declining (column-wise, then row-wise)

from the top left to the bottom right. With the exception of hierarchical level data from
Mueller et al. [107] and Heyman [108], all data is from the United States. For sources

and methods, see Appendix B.1.

* Includes only top 4 hierarchical levels
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type (property vs. labor)? At first glance, this may seem to support many polit-
ical economists’ (especially Marxists) deeply held convictions about functional
income distribution: capitalists tend to be much wealthier than workers. While
this may be true, the results shown here indicate something much different —
that property income is on average much less than labor income.

This result is best thought of as an artifact of the US Census accounting
method. In the Census data, ‘property income’ includes anyone with some form
of dividend, interest, or rental income. The result is that the average property
income is trivially small — about 8% of the average income from wages/salaries.
This is because many people earn small amounts of property income in the form
of interest on savings or dividends from small investments. Since these people
likely earn income from other sources, a direct comparison of Census data for
labor and property income has little meaning. However, I include it here for the
sake of completeness.

To compare the income-effect of functional income type, what we really need
to do is group individuals by the proportion of income coming from property
sources. Based on the work of Piketty [3], it is reasonable to expect that this
would strongly affect income. Piketty shows how the proportion of capitalist
income increases with income fractile in the United States. But this grouping is
the reverse of what would be required to apply my analysis of variance method.
Piketty groups individuals by income size, while the method used here would
require grouping individuals by the proportion of capitalist income. At present,
I am not aware of the data sources that would allow such a grouping.

The evidence presented here demonstrates that grouping individuals by hi-
erarchical level affects income more strongly than any of the other 18 factors
tested. Of course we cannot rule out some as yet unmeasured factor that has a
stronger effect on income, but this is the uncertain nature of empirical analysis.

3.5 Discussion

While science involves reductionism, income distribution theory has tended to-
wards greedy reductionism — a term coined by Daniel Dennet. He writes: “in
their eagerness for a bargain, in their zeal to explain too much too fast, [ greedy
reductionists] ... underestimate the complexities, trying to skip whole layers
or levels of theory in their rush to fasten everything securely and neatly to the
foundation” [109]. The two dominant theories of income distribution — neo-
classical and Marxist — are greedy reductionist. They offer extremely simple

principles that, on the face of it, are supposed to explain everyone’s income, all
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the time. Both posit a fundamental connection between income and productivity.
The problem is that this productivist hypothesis seems to fail at the gate. When
measured objectively, differences in productivity seem far too small to account
for differences in income. Therefore, I believe it is time for a new hypothesis.

A natural tendency is to fight fire with fire — to reject one greedy reductionist
theory and substitute another. If we followed this route, we might hypothesize
that power, not productivity, explains everyone’s income all the time. While this
may well be true, it is not a useful way to do empirical science. In this paper, I
have intentionally proposed a power theory of income distribution with limited
scope. I focused only on power within firm hierarchies, and offered a very rigid
definition of hierarchical power. My hypothesis was not that hierarchical power
explains all variation in income, but rather, that hierarchical power explains
more than any other factor.

With this narrower framework, the empirical evidence presented here is
quite clear. Relative income within firms is strongly correlated with hierarchi-
cal power, and grouping individuals by hierarchical rank affects income more
strongly than any other examined factor. This, I have claimed, is evidence for a
power theory of income distribution. Of course, these results are contingent on
the limited firm hierarchy data that is available. When better data comes along,
results may change.

I want now to discuss the wider implications of a power theory of income dis-
tribution. An important question to ask is — what are the mechanisms that cause
income to be correlated with hierarchical power? I doubt there is a simple an-
swer, simply because there are is dizzying number of ‘pathways to power’ [110].
A hierarchical chain of command can function because each subordinate sin-
cerely believes that their superior’s power is legitimate. In this case, subordinates
might simply agree that their superior should earn x amount more than them.
But, as the history of slavery indicates, a hierarchy can also function through
brutal repression. In this case, the income of superiors is an outcome of the ju-
dicious use of force. It seems plausible that the greater the inequality within a
hierarchy, the more the chain of command functions via intimidation and fear
rather than beliefs of legitimacy.

It is also plausible that belief in the legitimacy of the hierarchical system in-
creases with hierarchical rank [ 111]. If this is true, it should manifest in opinions
about income. Interestingly, a recent survey reveals that a majority of Americans
question the legitimacy of CEO income [112]. Only 16% of the general public
agree that CEOs are “paid the correct amount relative to the average worker”.
Yet a majority of Fortune 500 CEOs (64%) thought that CEO pay was ‘correct’. It
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would be fascinating to expand this type of survey to see if there is a gradient of
opinion by hierarchical rank, and if this opinion changes as inequality increases.

Another complexity to the power-income relation is that firms are not is-
lands unto themselves — there are power relations between institutions as well
as within them [113]. Government regulation, for instance, can have a signifi-
cant impact on CEO pay. CEOs in the US utility sector (which is highly regulated)
have significantly lower pay than CEOs in other sectors (see Appendix B.6, as
well as [114]). There is also evidence that CEO pay has a class-like cohesiveness.
The average compensation of top US CEOs moves coherently with the capitaliza-
tion of large firms [115]. This raises interesting implications for integrating the
concept of hierarchical power with Nitzan and Bichler’s [21] ‘capital as power’
hypothesis, in which capital is conceived as a symbolic representation of power.
Because our state of knowledge on these matters is so dismal, the avenues for
empirical research are quite expansive.

3.6 Conclusions

I want to conclude by reflecting on the philosophical underpinnings of income
distribution theory itself. Discussion about income typically involves questions
of value. What value does person x contribute to society? Is person y paid what
they are worth? Conventional economic theory takes these questions seriously
by proposing that people’s contributions have intrinsic worth [90]. According to
productivist theories, this worth corresponds to productivity. “To each according
to what he and the instruments he owns produces”, as Milton Friedman [116]
famously wrote. For reasons that should be studied, most humans would likely
agree that this is a just ethos.

But how strange this discussion looks when viewed from the outside. Would
any serious biologists ever ask: “does an alpha male gorilla get the number of
mates that he deserves?” I doubt it. To echo Alan Turing, the question is too
meaningless to deserve discussion [117]. It is like asking if a species ‘deserves’
to go extinct. To put the matter harshly, the philosophical basis of a power theory
of income distribution should be this: no one is ever ‘paid what they are worth’
because intrinsic worth is a scientifically meaningless concept. (But the fact that
we like to frame the discussion of income distribution in terms of ‘worth’ and
‘value’ is an interesting indication of our belief system).

What matters for human resource distribution is agency and beliefs about
agency. The range of possible human behavior is simply astounding, likely
because there is a complex feedback relation between our beliefs and our ac-
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tions. Beliefs affect behavior, and behavior affects beliefs. And this is as true
of individuals as it is of entire societies. Thus, humans can live as egalitarian
hunter-gatherers, as feudal caste societies, as brutal slave-owning societies, or
as capitalist oligarchies. What changes is our beliefs about agency, and these
beliefs change how we act. Certain beliefs encourage equality of agency (think
of Boehm’s reverse dominance hierarchy [118]), while others can allow agency
to accumulate in the hands of the few (think of the doctrine of the Divine right
of Kings). In the latter sense, agency becomes collective and institutional. It
becomes concentrated power.

If we had to put a power theory of income distribution into mantra form, it
would be this: “To each according to his/her power to take’. This ethos is pro-
foundly unsettling, and for most people, likely reviling. But just because we find
it vile, does not mean that it is false. Darwinian survival of the fittest is quite
ethically vile, but nonetheless scientifically valid. This is not a doctrine of what
our beliefs should be; rather, it is a hypothesis about the way that resources are
actually distributed.

The corollary of this thinking is that the distribution of income has no natural
state, and there are no natural laws that govern it. Distribution is an outcome
of our collective belief structure, which can change over time. Moreover, if a
power theory of income distribution is shown to be correct, then acts of income
redistribution can be considered merely as checks on power — no different than
the checks and balances that form the governmental basis of most liberal democ-
racies.
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Chapter 4

A Hierarchy Model of Income Distribution

Abstract

Based on worldly experience, most people would agree that firms are hierar-
chically organized, and that pay tends to increase as one moves up the hierar-
chy. But how this hierarchical structure affects income distribution has not been
widely studied. To remedy this situation, this paper presents a new model of
income distribution that explores the effects of social hierarchy. This ‘hierarchy
model’ takes the limited available evidence on the structure of firm hierarchies,
and generalizes it to create a large-scale simulation of the hierarchical structure
of the United States economy. Using this model, I conduct the first quantitative
investigation of hierarchy’s effect on income distribution. I find that hierarchy
plays a dominant role in shaping the tail of US income distribution. The model
suggests that hierarchy is responsible for generating the power-law scaling of
top incomes. Moreover, I find that hierarchy can be used to unify the study of
personal and functional income distribution, as well as to understand historical
trends in income inequality.

4.1 Introduction

The field of income distribution modeling is in need of new ideas. Ever since
Pareto [ 1] discovered the power law scaling of top incomes and wealth, theorists
have sought generative models for creating income distributions. In this regard,
the field has been wildly successful. An impressive array of models now exist that
can generate, from simple principles, observed distributions of income [2-21].
The problem is that this outward empirical success masks underlying assump-
tions that often have little to do with reality. To echo Leontief, “what is really
needed, in most cases, is a very difficult and seldom very neat assessment and
verification of these assumptions in terms of observed facts” [22].
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This paper seeks to take the field of income distribution modeling in a new
direction. In my view, the goal of an income distribution model should not be
to generate income distributions from first principles. Such models are best
left to physics, where there are actual ‘first principles’ (the laws of physics).
Instead, a good income distribution model should be a tool for dissecting income
distributions. A good model should be a tool for making generalizations from
scattered and piecemeal observations of the real-world. A good model should be
a tool for understanding connections to other branches of theory. A good model
should be a tool for unifying ideas, and for understanding history:.

A Focus on Hierarchy

In this paper, I build and test a model with the explicit purpose of understanding
how social hierarchy affects income distribution. I am interested in hierarchy
for a number of reasons. First, the use of hierarchy to distribute resources is
ubiquitous among social animals. Virtually all social animals form dominance
hierarchies, or ‘pecking orders’ [23-28]. Among such animals, hierarchical rank
plays a key role in gaining access to resources, particularly sexual mates [29-33].
Given our evolutionary heritage, it seems quite reasonable to hypothesize that
hierarchy plays a role in shaping resource distribution among humans.!

A second reason for my interest in hierarchy is that it offers a simple way
of studying the class structure of society. Many social scientists have proposed
that income distribution is connected to class structure [37-47]. However, there
is no consensus on what, exactly, a ‘class’ is. Nor is there agreement on which
classes are important for shaping income distribution. Hierarchy is useful for
studying class structure because it is abstract and generalizable. A hierarchy is
really just a particular form of network — one that has a tree-like structure [48].
Because human hierarchies represent a chain of command, they offer a natural
way of grouping individuals by authority (or what I call hierarchical power). Do
individuals with more hierarchical power earn more money? How does this
affect income distribution? These are questions that I seek to answer.

! Lewontin and Levins note that “struggles for legitimacy between political ideologies even-
tually come down to struggles over what constitutes human nature” [34]. Although I think the
human proclivity for forming hierarchies likely has an evolutionary basis, this does not mean
that I think that hierarchy represents a ‘natural order’. Rather, the evolutionary evidence simply
suggests that we have an instinct for forming hierarchy. This says nothing about how society
ought to be. Much of what we consider social progress consists of suppressing instinctual behav-
ior. The decline of human violence from the evolutionary background rate is perhaps the best
example of such progress [35,36].
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Lastly, I am interested in hierarchy because it is conspicuously absent from
mainstream theory, and thus its role in shaping income distribution is poorly
understood. The vast majority of income distribution models are atomistic —
they focus solely on individuals. I believe this approach is misguided. While it
would be a triumph of science if we could explain complex social structure in
terms of the actions of individuals, we are very far from this goal. This ‘bottom-
up’ approach requires a highly accurate model of human behavior — something
that we are hopelessly far from having.

The Model

The hierarchy model that I construct in this paper is a different sort of beast
than the typical economic model. The hierarchy model is not built on micro
principles. It is not dynamic, and it is not agent based. Instead, it is a tool
of necessity. There is simply too little empirical evidence about how hierarchy
shapes income to draw conclusions directly from the data. I use the hierarchy
model as a tool for making generalizations from the scattered evidence that does
exist. It is essentially an extrapolation (albeit a complex one). The model fits
trends to a small sample of firm-level data, and then generalizes these trends to
create a large-scale simulation of the hierarchical structure of the United States
economy. This simulated data can then be used to study how hierarchy affects
income.

Goals

I use the hierarchy model to pursue two goals — one that is quite modest and
one that is admittedly bold. The first (modest) goal, is to quantify the role that
hierarchy plays in shaping income distribution in the United States. The second,
admittedly bold, goal is to use hierarchy as a unification mechanism. I investigate
how hierarchy can be used to unify both the study of personal and functional
income, and our understanding of historical trends in income inequality.

Summary of Findings

The general finding in this paper is that the hierarchy model provides a rich
framework (no pun intended) for understanding the behavior of top incomes.
The hierarchy model explains why US income distribution has a power law tail,
and it provides a tantalizing way of linking personal and functional income dis-
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tribution. Lastly, hierarchical redistribution seems to be a fruitful way to under-
stand historical changes in top income shares.

Key Results

1. Hierarchy links top incomes (and wealth) to large institutions: Top
earning US executives, as well as the wealthiest Americans, work for (or own)
firms that are much larger than those of the general population. The hierarchy
model reproduces this effect.

2. Hierarchy shapes top incomes. The model demonstrates a clear division
between the body and the tail of the income distribution. The body of the dis-
tribution is primarily determined by between-firm income dispersion. However,
the tail of the distribution is almost completely determined by hierarchy. The
model reproduces the power law scaling of the top 1% of US incomes. I show
that this is purely an effect of hierarchy.

3. Hierarchy links personal and functional income: Building on the work of
Nitzan and Bichler [49], I test the hypothesis that being a ‘capitalist’ is a function
of hierarchical power. Specifically, I propose that the fraction of income coming
from capitalist sources scales with hierarchical power. A model implementing
this hypothesis accurately predicts how capitalist income share increases with
income size in the United States. The same model also reproduces the size
distribution of US capitalist income, as well as the capitalist share of national
income.

4. Changes in hierarchical pay explain historical changes in inequality. I
test the hypothesis that the recent explosion in US top income shares can be
explained in terms of differential gains to hierarchical rank and power. By vary-
ing the rate at which income scales with hierarchical rank, I am able to use the
model to reproduce historical trends. The model is able to replicate not only
the increasing share of the top 1%, but also the increasing pay of top CEOs.
The same model, when used in tandem with the capitalist gradient hypothe-
sis, is able replicate (with 75% accuracy) the observed relation between US top
income share and the dividend share of national income.
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Paper Layout

The remainder of the paper is divided into three sections. In section 4.2, [ review
the basic characteristics of the hierarchy model. (A detailed, technical discussion
of the model’s algorithm can be found in the appendix). I then test the model
against various aspects of US income distribution. Having confirmed that the
hierarchy model gives sound results, I use it to estimate how hierarchy affects
US income distribution. In section 4.3, I investigate if hierarchy can be used to
unify the study of personal and functional income distribution. In section 4.4,
I investigate if hierarchy can be used to unify our understanding of historical
trends in income inequality.

4.2 A Hierarchy Model

The hierarchy model is based on the hypothesis that human institutions are
hierarchically organized, and that hierarchical power (authority over subordi-
nates) plays a key role in determining income. While this hypothesis is quite
radical by the standards of neoclassical economics, I am certainly not the first
scholar to suspect that power plays a role in income distribution (see, for in-
stance [37,42,45,49-61]).

The starting point for my approach is the seminal work of Herbert Simon
[62] and H.F Lydall [63]. In the late 1950s, Simon and Lydall both developed
simple models that focused on the branching structure of firm hierarchies. The
distinguishing feature of a branching hierarchy is that each superior has control
over multiple subordinates (see Fig. 4.1). This feature is important because it
distinguishes human hierarchies from the linear dominance hierarchies (pecking
orders) seen in animals. Within a linear hierarchy, there are as many ranks as
there are individuals. Consequently, there is no class structure. However, a
branching hierarchy naturally leads to a pyramid-shaped class system based on
hierarchical rank.

Simon and Lydall both showed how branching hierarchical structure could
explain regularities in income distribution. Simon used a simple hierarchical
model of the firm to explain the observed scaling between CEO pay and firm sales
[64]. Lydall showed how firm hierarchy could lead to a power law distribution
of top incomes. Although promising, it seems that this work was largely ignored
by the economics profession. Soon after these papers were published, human
capital theory became the prevailing orthodoxy in personal income distribution
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Figure 4.1: A Branching Hierarchy

This figure shows an idealized branching hierarchy in which each superior has
two subordinates. This superior/subordinate ratio — often called the span
of control — can be used to mathematically describe the hierarchy. Starting
from the bottom rank, each consecutive rank decreases in size by a factor of
the span of control. Evidence from real-world firms suggests that the span of
control is not constant by rank, but instead tends to increase as one moves up
the hierarchy (see Appendix C.2).

theory [65-67]. As a result, little work was done to explore the consequences
of hierarchical organization.

This paper draws on the work of Simon and Lydall, but updates their model
in light of recent empirical work. Both Simon and Lydall assumed a constant
span of control. (The span of control is the number of subordinates per supe-
rior). Case study evidence (discussed in Appendix C.2) indicates that the span of
control is not constant. Rather, it tends to increase as one moves up the hierar-
chy. Simon and Lydall also assumed a constant ratio of average income between
adjacent hierarchical ranks. Again, case study evidence suggests that this is not
quite true. Like the span of control, the pay ratio between ranks also tends to
increase as one moves up the hierarchy:.

Another key feature of my approach is that I take full advantage of modern
computational power to build a large-scale, stochastic simulation. In contrast,
Simon and Lydall used simple analytic methods. Simulation allows investigation
that would otherwise be impossible with a purely analytic approach.
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4.2.1 Modeling Goals and Methods

As I stated in the introduction, the goal of my modeling effort is not to generate a
distribution of income from first principles. Instead, the model is designed to be
a surrogate for data that does not exist. What do I mean by this? After scouring
the scientific literature, I have been able to find only a handful of studies that
document, with sufficient detail, the hierarchical structure of real-world firms
(see Appendix C.2). This paucity of data likely owes to two things. Firstly,
the discipline of economics is generally disinterested in hierarchy and power,
so there is little incentive to do empirical work on this topic. Secondly, firm
employment and payroll data is largely proprietary, meaning it is simply not
available to researchers unless they have an inside connection.

This lack of data means that it is virtually impossible to study the general
effects of hierarchy on income distribution solely by using the available case-
study evidence. The hierarchy model is designed to generate data that I wish was
available directly. The model takes the scant data that does exist, and fits trends
(and parameterized distributions) to it. I then use the model to extrapolate these
trends to a large-scale simulation of the economy. The resulting model is entirely
dependent on the input, firm-level data. I do not tune the model to reproduce
macro level results. The model output is purely what is implied by generalizing
the trends found in input data.

The model is built on a tripartite income classification scheme that allows
for three sources of income dispersion (see Fig. 4.2) :

Source 1: Income dispersion between hierarchical levels of each firm

(inter-hierarchical dispersion);

Source 2: Income dispersion within hierarchical levels of each firm

(intra-hierarchical dispersion);

Source 3: Income dispersion between different firms
(inter-firm dispersion).

Inter-firm and intra-hierarchical level dispersion are not explained by the model.
(In the jargon of economic modeling, these dispersion sources are exogenous).
In contrast, inter-hierarchical dispersion is partially explained by the model. It
is explained in the sense that it is not ex nihilo — this dispersion does not come
from nowhere. The model contains firms that have a specific hierarchical struc-
ture of employment and pay. However, the reason for this hierarchical struc-
ture is not explained by the model. Rather, hierarchical structure is determined
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Figure 4.2: A Tripartite Division of Income Distribution

This figure illustrates the income distribution grouping scheme used by the hierarchy
model. The model allows for three sources of income dispersion. Inter-firm dispersion
consists of differences in (average) pay between firms. Within each firm, there are two
further sources of dispersion. Inter-hierarchical level dispersion consists of differences
in (average) pay between hierarchical levels, while intra-hierarchical level dispersion
consists of differences in pay within each hierarchical level.

from regressions on case study data, in conjunction with firm-level data from
the Compustat and Execucomp databases.

Modeling the United States

The model is designed to study the hierarchical structure of the US economy as
it was (on average) over the years 1992-2015. At the highest level of abstrac-
tion, the model has three parts. First, the model creates a firm size distribution
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that dictates how many firms of a given size will exist. Second, for each firm
in this distribution, the model creates a hierarchical structure. This means the
model determines how many ranks will exist, and how many individuals will oc-
cupy each hierarchical rank. Lastly, the model uses each of the three dispersion
sources (outlined above) to stochastically generate an income for every individ-
ual in every firm. In a sense, everything else amounts to details about how each
of these steps is carried out. I review here the most important elements of each
step. A technical discussion can be found in the Appendix.

Step 1: Create a Firm Size Distribution. The first step of the model is to gen-
erate a distribution of firm sizes. The available evidence suggests that national
firm size distributions can be modeled by a power law [68-70]. Under this as-

¢ where

sumption, the probability of finding a firm of size x is proportional to x~
a is a constant. I model the United States firm size distribution with 1 million
firms distributed according to a discrete power law distribution with exponent

a = 2.01 (see Appendix C.5).

Step 2: Endow Firms with Hierarchical Structure. The hierarchy model cap-
tures only the aggregate hierarchical structure of firms. That is, I model the num-
ber of employees in each hierarchical level, not the exact chain of command. I
base the model on a number of recent case studies that have documented the
aggregate hierarchical structure of firms in various developed countries (see Ap-
pendix C.2). From this data, I make generalizations about the hierarchical struc-
ture of firms. The evidence suggests that the span of control (the ratio between
adjacent hierarchical levels) increases with rank. I model this increase with an
exponential function.

For simplicity, all firms in the model have the same hierarchical structure —
that is, they are governed by the same span of control function. However, since
there is a great deal of uncertainty in this function, I run the model many times.
Each different model run uses a slightly different span of control function, de-
termined by resampling from case study data. The result is that the hierarchical
structure of firms varies stochastically between different model runs, allowing
us to capture uncertainty in the underlying empirical data. For more details, see
Appendix C.4 and C.5.

Step 3: Endow Individuals with Income After each firm has a hierarchical
structure, we begin the most important part of the model, which is to assign ev-
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ery individual an income. Because the model has three dispersion mechanisms,
this last step has three components, outlined below.

Step 3A: Generate Inter-Hierarchical Level Dispersion. In the model, hier-
archical pay is constructed from the bottom up. Starting from the bottom rank, I
define a function that determines the rate at which pay increases by hierarchical
rank. This function is informed by case study data (see Appendix C.2). Un-
like hierarchical employment structure, each modeled firm is given a different
hierarchical pay structure. The process of assigning different hierarchical pay
structure to each firm is heavily informed by firm-level data in the Compustat
database. (See Appendix C.3 for a detailed discussion of the Compustat data).

The basic idea is this: before running the full simulation, I fit the hierar-
chy model to Compustat data for real-world American firms. Compustat (in
conjunction with Execucomp) provides data on CEO pay, average pay, and firm
employment. Assuming the CEO occupies the top hierarchical level, we can
use this information to model the hierarchical pay structure of each Compus-
tat firm. Once this is complete, we have an indication of how hierarchical pay
should vary across firms. The model’s main simulation is then informed by this
variation. The result is a unique hierarchical pay structure for each firm. For
more details, see Appendix C.4 and C.5.

Step 3B: Generate Inter-Firm Dispersion. I create inter-firm income disper-
sion by varying (average) pay in the bottom hierarchical level of each firm. This
variation is informed by firm-level data in the Compustat database. As discussed
in Step 3A, prior to running a full-scale simulation, I fit the model to firms in
the Compustat database. After having fit hierarchical pay, I use this information
to estimate how base-level pay varies across these firms. This variation then
informs the model’s main simulation. For more details, see Appendix C.4 and
C.5.

Step 3C: Generate Intra-Hierarchical Level Dispersion. The last step is to
model the income dispersion within the hierarchical levels of each firm. The
available case study evidence suggests that income dispersion within hierarchi-
cal levels is roughly constant across all hierarchical levels (see Appendix C.2).
To simplify the model, I further assume that intra-hierarchical level dispersion is
constant across all firms. Informed by case study data, I use a single parameter-
ized distribution to randomly generate income dispersion within all hierarchical
levels of every firm. For more details, see Appendix C.4 and C.5.
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Figure 4.3: A Landscape View of the Hierarchy Model

This figure visualizes the US hierarchy model as a landscape of three dimensional firms.
Each pyramid represents a single firm, with size indicating the number of employees
and height corresponding to the number of hierarchical levels. If you look closely, you
will see vertical lines corresponding to individuals. Income (relative to the median) is
indicated by color. This visualization has 20,000 firms — a small sample of the actual
model, which uses 1 million firms.

Visualizing the US Hierarchy Model

From the brief discussion here (or even from the technical discussion in the Ap-
pendix), it is not easy to gain an intuitive understanding of what the model ‘looks
like’. To aid with such an intuitive understanding, Figure 4.3 shows a ‘landscape’
view of the model’s structure. Each pyramid represents a different hierarchically
organized firm. The size of each pyramid corresponds to the number of employ-
ees, height represents hierarchical level, and color represents relative income.

Figure 4.3 nicely highlights the main characteristics of the model. The firm
power law distribution is clearly visible. The vast majority of firms are small, but
there are a few behemoths. Inter-firm income dispersion and inter-hierarchical
level income dispersion are also visible, while intra-hierarchical level income



A Hierarchy Model 103

dispersion appears negligible. Lastly, top incomes are concentrated in upper
hierarchical levels, and consequently occur mostly in larger firms. These facts,
which are qualitatively visible here, become even more clear as we analyze the
model results in quantitative terms.

4.2.2 Testing the Hierarchy Model (Part 1)

The purpose of the hierarchy model is to study the hierarchical structure of the
United States economy. The first step, then, is to make sure that the model
produces realistic results. To that end, Figure 4.4 compares the model’s aggre-
gate structure to US empirical data. Even though the model is an extrapolation
from a limited set of data, it does a reasonably accurate job of reproducing US
distribution of income.

A few things are obvious from this comparison. Firstly, the model under-
estimates US income inequality, both in terms of the Gini index (Fig. 4.4A) and
the income share of the top 1% (Fig. 4.4B). What is the source of this discrep-
ancy? Looking at the income probability density in Figure 4.4D, it appears that
the US income distribution is more ‘bottom heavy’ than the model. That is, the
model produces too few extremely small incomes, relative to the US. This ten-
dency is also evident in the cumulative distribution (Fig. 4.4F).

Why does this discrepancy occur? I demonstrate in Appendix C.6 that the
discrepancy can be removed by increasing the model’s inter-firm income disper-
sion. This suggests that the model’s under-estimate of US inequality is due to
an under-estimate of inter-firm income dispersion. My guess is that this occurs
because the model is based on Compustat firm data, which is not a representa-
tive sample of the US firm population. Compustat contains data for public firms
only, and as a result, is biased towards large firms. I suspect that a more rep-
resentative firm sample would give greater inter-firm income dispersion. (It is
also possible that the model-empirical discrepancy results from some factor that
is not included in the model. The most plausible would be unemployment, but
many others are possible).

I include adjusted results in the Appendix to show that the model is capable
of closely reproducing the important features of US income distribution (as any
well-parameterized model should be). I do not, however, use this adjusted data
for any of the proceeding analysis. The purpose of the model is to extrapolate
empirical data, warts and all.

While the model slightly misrepresents the ‘body’ of US income distribution,
it accurately reproduces the tail. This is evident in the complementary cumula-
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Figure 4.4: Modeled Income Distribution vs. US Data

This figure compares various aspects of the model’s income
distribution to US data over the years 1992-2015. Panel A
shows the Gini index, with two different US sources — the
Current Population Survey (CPS) and the Internal Revenue
Service (IRS). Panel B shows the top 1% income share, us-
ing data from 17 different time series. Panel C shows the
results of fitting a power law distribution to the top 1% of
incomes (where «a is the scaling exponent). Panel D plots
the income density curve with mean income normalized to

1 (using data from the CPS). Panels E, E and G use IRS
data to construct the Lorenz curve, cumulative distribution,
and complementary cumulative distribution (respectively).
The cumulative distribution shows the proportion of indi-
viduals with income less than the given x value. The com-
plementary cumulative distribution shows the proportion
of individuals with income greater than the given x value.
Note the log scale on the x-axis for these last two plots. For
sources and methods, see Appendix C.1.
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tive distribution (Fig. 4.4F) in the form of virtually identical model and empirical
slopes in the right tail. How can these slopes be quantified? One way is to fit
the tail of the income distribution to a power law — a method that dates back
to the work of Pareto [1]. This approach provides a way of analyzing the tail of
the income distribution independently from the body.

Under a power law distribution, the probability of finding someone with in-

come Xx is proportional to x™¢

, Where a is a constant (the power law exponent).
The approximate power law scaling of top incomes is visible as the straight line
in the tail of the complementary cumulative distribution (when plotted on a log-
log scale). The choice of where the distribution ‘tail’ begins is arbitrary. I define
the tail as the top 1% of incomes — a threshold that has been popularized by
Piketty [71]. Figure 4.4C shows the results of fitting a power law to the top 1%
of incomes (for methods, see Appendix C.1). The model produces power law ex-
ponents that are statistically indistinguishable from those found in the US data.
Both a Kolmogorov—Smirnov test and a t-test indicate no significant differences

(at the 5% level) between the model and empirical results.

To conclude, the model produces an income distribution that is roughly con-
sistent with the US distribution of income. In particular the model closely re-
produces the tail of the US distribution.

4.2.3 Testing the Hierarchy Model (Part 2)

When discussing the model visualization shown in Figure 4.3, I noted that large
incomes appear to be clustered at the tops of large firms. This is a defining
feature of the hierarchy model. It occurs because income scales strongly with
hierarchical rank. As a result, top earners are found at the tops of large firms, be-
cause these firms have the most hierarchical levels. This prediction is not made
by any other model of income distribution (to my knowledge). It is important,
therefore, that we put it to the test.

To test this prediction, I look at the distribution of firm sizes associated with
top earning individuals. What does this mean? I take a sample of Americans
with top incomes, and then record the firms with which these individuals are
associated. I then look at the size distribution of these firms. I do the same with
the model, and compare the results.

I conduct this test using data from the Forbes 400 and Execucomp. The
Forbes 400 list is useful because it is a definitive ranking of the 400 richest Amer-
icans, and it provides the institutional source of each individual’s wealth. The
caveat is that this list is a ranking by wealth, not income. I use the Forbes 400 as
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a proxy for top US incomes, under the assumption that wealth and income are
strongly related. I supplement the Forbes 400 data with the ‘Execucomp 500’.
The latter is composed of the 500 top paid US executives (in each year between
1992-2015) in the Execucomp database. The advantage of the Execucomp 500
is that it is a ranking explicitly by income. The disadvantage is that we do not
know if these 500 executives are actually the top paid US individuals.

Before discussing the results of this test, it is instructive to know what a null-
effect would look like. If there is absolutely no relation between income and firm
membership, what sort of firm size distribution should be associated with top
incomes? It turns out that for the United States, we should expect a null-effect
to return a roughly log-uniform distribution (see Appendix C.7 for a derivation).

Results for the Fortune 400 and Execucomp 500 firm size distributions are
shown in the main panel of Figure 4.5. To be clear, these density plots represent
the size distribution of firms associated with the richest 400 Americans and the
500 top paid executives in the Execucomp database (respectively). To better
visualize the distribution, I plot the density of the logarithm of firm size. Under
this transformation, the null-effect result will appear as a uniform distribution.
From the evidence shown in Figure 4.5, we can immediately conclude that the
null-effect is false. There is definitely a relation between top incomes (wealth)
and firm size. But is it the relation that is predicted by the hierarchy model?

To find out, I conduct the same analysis on the model. I select the model’s
500 top paid individuals and record the size distribution of associated firms. The
results are shown in Figure 4.5 as the ‘Model 500’. The model predicts a rela-
tion between top incomes and firm size that is very similar to the US empirical
data. To be sure, the model results are not identical to either the Forbes 400 or
the Execucomp 500 distributions. But, given the paucity of data on which the
model is based (as well as the general uncertainty in the empirical analysis of
top incomes), I count this result as a success. The model produces results that
are roughly consistent with the US data.

Since the model has three sources of income dispersion, we naturally want
to know which of these sources is responsible for producing the results in Figure
4.5. To answer this question, I use a counterfactual analysis. I create three dif-
ferent counterfactual models to supplement the original (Model A). Each coun-
terfactual model isolates a single source of dispersion as it appears in the original
model. Model B has intra-hierarchical dispersion only, Model C has inter-firm
dispersion only, and Model D has intra-hierarchical level dispersion only.

The results of this counterfactual analysis are shown in the right-hand panels
in Figure 4.5. This analysis indicates that it is exclusively inter-hierarchical in-
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Figure 4.5: Firm Size Distributions Associated With Top Incomes and Wealth

This figure shows the size distribution of firms associated with top earning individuals in
the US and in the hierarchy model (of the US). The ‘Forbes 400’ represents the size dis-
tribution of firms associated with (owned by) the wealthiest 400 Americans in the year
2014. The ‘Execucomp 500’ represents the size distribution of firms associated with the
500 top earning American executives (in each year from 1992-2015) in the Execucomp
database. The ‘Model 500’ represents the size distribution of firms associated with the
500 top earning individuals in the hierarchy model. Results for counterfactual models
are shown on the right. Each counterfactual model isolates a single source of income
dispersion. Model B shows inter-hierarchical dispersion only, Model C shows inter-firm
dispersion only, and Model D shows intra-hierarchical level dispersion only. In all plots,
I also show the log-uniform distribution (dotted line), which is predicted if there is no
relation between firm membership and income. For sources and methods, see Appendix
C.1.
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come dispersion (Model B) that is responsible for associating top incomes with
large institutions. How do we know this? The inter-hierarchical dispersion
model (B) produces results that are virtually identical to the original model.
At the same time, inter-firm dispersion only (Model C) and intra-hierarchical
level dispersion only (Model D) produce drastically different results.

Note that with intra-hierarchical dispersion only (Model D), we recover the
null-effect (a log-uniform distribution). Why? In this model, firms play no part
in determining income. (Income for all individuals is determined by a single
stochastic function). Interestingly, this is a world that is implied by many models
of income that focus solely on interactions between individuals [2,3,5,6,10-13,
15,16, 20]. In these models, there are no firms. The implicit assumption must
be that firms play no role in the distribution of income. Given the evidence in
Figure 4.5, it would seem that these models need rethinking.

To conclude, the hierarchy model correctly predicts that top paid individuals
should be associated with firms that are far larger than those of the general
population. Moreover, the model indicates that this effect is purely a result of
inter-hierarchical pay dispersion.

4.2.4 Quantifying Hierarchy’s Effect on Income Distribution

Having established that the hierarchy model gives credible results, I now use
it to investigate how hierarchy affects US income distribution. I isolate the ef-
fects of hierarchy by creating three different counterfactual version of the United
States. Each version contains only one of the three sources of income dispersion
used in the original model. By comparing these counterfactual models to the
original model, we can determine how each dispersion source affects income
distribution.

Let’s begin with a seemingly simple question: how does hierarchy affect in-
come inequality? The results in Figure 4.6 indicate that this question is not so
simple. The affect seems to depend on how we measure inequality. Let’s begin
by using the the Gini index (Figure 4.6A). Here we see that the model with inter-
firm dispersion has a Gini index that is closest to the original model. (The model
with inter-hierarchical dispersion comes a distant second). This result suggests
that hierarchy does not have a particularly strong effect on inequality.

However, things change drastically when we switch to measuring inequality
in terms of the income share of the top 1% (Fig. 4.6B). Now we find that the
model with inter-hierarchical dispersion has inequality that is nearly identical
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Figure 4.6: A Counterfactual Analysis of Model Properties

This figure compares the original hierarchy model of the United States to three differ-
ent counterfactual models. Each counterfactual model contains only one of the three
sources of income dispersion. Panel A compares the Gini index of each model, while
panel B compares the top 1% income share. Note that since both of these inequality
metrics are not additive, the inequality in the counterfactual models will not sum to the
inequality in the original model. Panel C shows power law exponents fitted to the top
1% of incomes in each distribution. Panel D shows the Lorenz curve for each model,
with shaded regions indicating the 95% range. Panel E shows the income density of each
model, plotted on a log-log scale. The shaded region indicates the top 1% of incomes.
For clarity (and because it plays a negligible role determining income distribution), the
intra-hierarchical dispersion model is not shown in panels D and E.
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to the original model. The other two sources of dispersion are inconsequential.
How can this be??

To understand this apparent contradiction, let’s look at the Lorenz curves for
each model (Fig. 4.6D). The Lorenz curve offers a convenient way to visualize
the ‘shape’ of inequality. The curve traces the cumulative fraction of income
held by all individuals below a given income percentile. The Gini index and
the top 1% income share are both intimately related to the Lorenz curve. The
Gini index is proportional to the area between the Lorenz curve and the line of
perfect equality (the black line in Fig. 4.6D). The income share of the top 1% is
equal to the vertical distance between the Lorenz curve and y = 1 (at the point
x =0.99).

The apparent contradiction between the Gini and top 1% results is now easy
to understand. It is caused by an intersection between the inter-firm Lorenz curve
and the inter-hierarchical level Lorenz curve. For incomes below this intersec-
tion, inter-firm dispersion plays the most important role in shaping inequality.
However, for incomes above the intersection, hierarchy plays the most impor-
tant role in shaping inequality. This nicely illustrates the pitfalls of quantifying
inequality with a single metric: it is never possible to capture all of the informa-
tion present in a Lorenz curve.

The counterfactual models indicate that inter-firm dispersion plays a very dif-
ferent role in shaping income inequality than does inter-hierarchical dispersion.
This is made even more clear by Figure 4.6E. Here I plot the income density (in
log-log form) of the original model. I then compare this to the density of the
inter-firm and inter-hierarchical counterfactual models. This allows us to see
how each factor contributes to the original model’s distribution of income. To

2 Some readers may note that I am using non-decomposable metrics to measure inequality.
Since neither the Gini index nor the top 1% income share are decomposable, the inequality of
the counterfactual models will not sum to the inequality of the original model. Thus we cannot
quantify exactly ‘how much’ each factor contributes to income inequality. Although there are
inequality metrics that are decomposable (such as the Theil index, or simply the variance), I
choose not to use them here. For starters, such measures are generally far less intuitive than the
Gini index or top income shares. Second, decomposable measures merely give a decomposition
of inequality — not the decomposition. Decomposition requires deciding how to weight the
number of incomes of a given size against the size of the income. Since there are many ways to do
this, there are many equally valid decompositions of inequality. Anthony Shorrocks summarizes
the problem nicely: “Inequality comparisons are invariably sensitive to the choice of inequality
index used since alternative measures tend to emphasize inequality at different points in the
distribution. Replacing one index by another will therefore almost always change the relative
significance of the between- and with-group terms” [72].
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interpret this plot, look at how closely the distribution of a specific counterfac-
tual model comes to that of the original model. The closer it is, the more that
factor influences income at the point in question. The results are unambigu-
ous. A clear division exists between the body and tail of the distribution. The
body of the distribution is almost completely determined by inter-firm disper-
sion. However, the tail of the distribution is almost completely determined by
inter-hierarchical dispersion. (I do not include intra-hierarchical level dispersion
in this plot because it plays a negligible role in shaping income distribution).

Figure 4.6C further attests to the importance of hierarchy for determining the
tail of the distribution. This figure shows the fitted power law exponent for the
top 1% of incomes in each counterfactual model. The power law exponent gen-
erated by the inter-hierarchical model is virtually identical to the exponent gen-
erated by the original model. The other counterfactual models produce wildly
different results. This indicates that it is solely inter-hierarchical dispersion that
is responsible for generating top incomes. (For a discussion of how hierarchical
class structure works to create the power law tail, see Appendix C.8.)

To be clear, fitting a power law to a distribution does not indicate that the
underlying distribution is actually a power law. We know a priori that neither
inter-firm nor intra-hierarchy models actually produce power law tails, since
dispersion within these models is generated with gamma and lognormal dis-
tributions, respectively (see Appendix C.5). In this case, the fitted power law
exponent is purely descriptive. It allows us to quantify the heaviness of the dis-
tribution tail, independently from the body of the distribution. A heavier tail is
indicated by a smaller power law exponent. The large exponents for inter-firm
and intra-hierarchy models indicate that these distributions have tails that are
far less heavy than the inter-hierarchical model.

To summarize, I have used the hierarchy model to gain insight into how
hierarchy affects the US distribution of income. I find that hierarchy plays a
decisive role in shaping the tail of the distribution of income. In contrast, the
body of the distribution appears to be mostly determined by differences in pay
between firms. This suggests that hierarchical class structure is primarily useful
for understanding top incomes.

4.3 A Capitalist Gradient Hypothesis

Having established that the hierarchy model gives decent results, I now put it
to a bold use. As I stated in the introduction, I believe that hierarchy shapes
our social world in enumerable ways. As such, I want to know if hierarchy can
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be used as a mechanism for unifying income distribution theory. I devote the
remainder of the paper to this question. In this section, I investigate if hierarchy
can be used to connect personal and functional income distribution.

4.3.1 Capitalists and the 1%

Long before the Occupy movement decried the separation between “the 1% and
the rest of us” [73], the labor movement decried the separation between capital-
ists and the rest of us (workers). Are the two types of class division connected?
I think so. And I think that hierarchy lies at the root of this connection. The hi-
erarchy model suggests that top earners are hierarchical elites. 1 think the same
is true of capitalists.

But for this hypothesis to make any sense, we must radically shift our ideas
about what ‘capital’ is, and what it means to be a ‘capitalist’. Building on Nitzan
and Bichler’s capital as power hypothesis [49], I propose that capitalist income
is derived from power — hierarchical power. By owning firms, capitalists earn
the legal right to helm firm hierarchies. From this position of power, capitalists
can partition firm income streams as they see fit [74]. This hierarchical power,
I suggest, is the source of capitalist income.

But a hierarchy does not have a single position of power. Rather, there is
a gradient of power from top to bottom. Perhaps, along with this gradient of
power, there is a gradient of ownership and a gradient of capitalist income? I
call this the ‘capitalist gradient’ hypothesis. The idea is that the proportion of in-
come individuals earn from capitalist sources tends to increase with hierarchical
power. In other words, we can predict (in statistical terms) someone’s capitalist
income fraction simply by knowing their position within a firm hierarchy.

This is a bold and very much exploratory idea, but one worth testing. Sur-
prisingly (from a mainstream perspective), I find that the capitalist gradient hy-
pothesis has empirical support. Evidence suggests that the capitalist income
fraction of US CEOs scales with hierarchical power (as I measure it). Using the
hierarchy model, I generalize this CEO relation to test if it applies to the general
US population. The model suggests that it does. This capitalist gradient model
reproduces the US distribution of capitalist income as well as the scaling relation
between income size and capitalist income fraction.
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4.3.2 The Source of Capitalist Income

To begin our investigation of capitalist income, let’s start with what all political
economists can agree on. Capitalist income stems from owning capital. Beyond
this trivial statement, opinions diverge rapidly. The sticking point is capital itself.
True, capitalists earn income from capital — but what is capital?

Let’s begin with the neoclassical vision of capital. In neoclassical theory,
capital is a ‘factor of production’. Capital consists of all the tools, technology,
and infrastructure that are used to produce economic output.® Capitalists earn
income because their capital is productive — it contributes to economic output
[75,76]. This thinking is illustrated in Figure 4.7.

Marxists start with a similar physical understanding of capital. According to
Marx, capital is the ‘means of production’ — the tools, technology, and infras-
tructure that are used by society to create economic output [39]. The Marxist
twist is to assert that capitalist income is parasitic. Marxists believe that labor is
the source of all value. Because capitalists own the means of production, they
are able to extract a surplus from labor. This thinking is illustrated in Figure 4.8.

Both neoclassical and Marxist theories of capital keep their eyes firmly on the
‘real’ sphere of production — on the ownership of things. The ‘capital as power’
approach, proposed by Nitzan and Bichler, is quite different. This approach fo-
cuses on ownership as an institutional act. What is the difference? Focusing on
the act of ownership (and not what is owned) puts the focus on power. Nitzan
and Bichler summarize: “ownership is wholly and only an institution of exclu-
sion, and institutional exclusion is a matter of organized power” [49]. According
to the capital as power hypothesis, capital is not a thing, but an act. It is a com-
modification of property rights — a vendible form of power.

In the context of studying hierarchy, the capital as power approach is useful
because it puts the focus on the ownership of institutions (not things). Consider
what it means to purchase all the shares in a company. What is it that you are
buying? You are essentially purchasing legal control over the company. From
this position of power, you have legal authority to divide up the firm’s income
stream as you see fit. You could slash wages and pay yourself a magnificent
profit, or raise wages and earn no profit at all. From this perspective, capitalist
income stems from one’s power as owner.

3 Admittedly, neoclassical economists have significantly broadened their definition of ‘capital’
over the years. For instance, there is now ‘human capital’ [65-67], ‘knowledge capital’ [77,78],
and even ‘cultural capital’ [79]. However, what has not changed is the insistence that ‘capital’
(in all its forms) is productive.
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Figure 4.7: The Neoclassical Vision of Capitalist Income

In neoclassical theory, capitalists earn income because their capital is inherently produc-
tive. Capitalists earn the ‘marginal product’ of their capital — the incremental increase
in output per incremental increase in capital input.
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Figure 4.8: The Marxist Vision of Capitalist Income

In Marxist theory, capitalists earn income because they own the ‘means of production’.
Unlike neoclassical theory, Marxists see labor as the source of all value, and capitalists
as parasites. Because capitalists control the means of production (capital), they are able
to extract a surplus from labor.
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For the present argument regarding the basis of capitalist income, I set aside
the question of how the firm’s income stream is derived. Instead, I am inter-
ested in how an owner wields power to partition a firm’s income stream. The
central hypothesis in this paper is that firms are hierarchically organized. This
hypothesis implies that ownership confers the right to sit at the top of the firm
hierarchy. From this position of hierarchical power (as owner), the capitalist has
the authority to divide up the firm’s income stream. This suggests that capitalist
income stems from hierarchical power. This vision is illustrated in Figure 4.9.

While this vision is intuitive (at least to me), it is almost certainly too sim-
plistic. The problem is that it is based on a 19th century, all-or-nothing concept
of ownership. In this vision, a capitalist is the owner of a firm. Unfortunately,
the rise of joint-stock companies muddies this tidy theory. Joint-stock companies
allow ownership to by divided among many people. In the modern world, par-
tial ownership is the rule. This realization led to the famous ‘separation thesis’
posited by Berle and Means [80]. The idea is that ownership has become so dif-
fuse that capitalists no longer control the corporate hierarchy. Instead, control
is ceded to managers, who are employees.

The problem with the separation thesis is that it acknowledges the rise of
partial ownership, but insists on a traditional dichotomy between capitalists and
laborers. The truth is that the line between being a capitalist and being a laborer
has been blurred. Top managers often earn a large portion of their income from
stock options. Conversely, owners of firms often pay themselves some form of
salary. Instead of a capitalist-laborer dichotomy, what we need is a capitalist-
laborer gradient. This implies that there is a steady range between being purely
a capitalist and being purely a laborer. Figure 4.10 shows what this might look
like when applied to a hierarchy. As one moves up the hierarchy, individuals
become increasingly more capitalistic.

This capitalist gradient hypothesis can be interpreted a number of ways. The
simplest interpretation is to assume a gradient of ownership within a single firm.
However, this is realistic only for firms that are 100% employee owned. While
such firms do exist (and can become quite large), they are not the norm. It is
more common for a firm to have partial employee ownership via an employee
stock ownership plan. In 2017, about 14 million Americans were enrolled in
employee stock ownership plans (ESOP) [81]. This represents about 9% of the
workforce. It is quite plausible that these employee stock options are preferen-
tially rewarded to the top tiers of the hierarchy. However, ESOP assets constitute
a small minority (roughly 4%) of total US market capitalization.* This means
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Figure 4.9: A Hierarchical Power Vision of Capitalist Income

This figure shows my interpretation of the capital as power framework, when applied to
a hierarchically organized firm. Unlike in neoclassical and Marxist visions of capital (Fig.
4.7 and 4.8, respectively) I do not show physical capital. This is not to say that physical
capital does not exist — we simply do not focus on it. Rather, we focus on ownership
of institutions. Capital is conceived solely in terms of property rights. By purchasing a
firm, a capitalist purchases the legal right to sit at the top of the firm hierarchy. From
this position of power, the capitalist has the right to divide up the firm’s income stream
as he sees fit. Under this vision, hierarchical power is the source of capitalist income.
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Figure 4.10: A Gradient Vision of Capitalist Income

This figure shows a more nuanced (than Fig. 4.9) interpretation of the relation between
capitalist income and firm hierarchy. In this model, there is a smooth gradient between
being 100% capitalist (earning all your income from capitalist sources) and being 100%
laborer (earning all your income from labor sources). I hypothesize that the capitalist
share of individual income tends to increase with hierarchical power.
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they are probably not the main source of capitalist income.

Therefore, it is most realistic to interpret the gradient model as a statisti-
cal phenomenon that occurs at the societal level. We admit that the ownership
structure of any given firm is likely complex. Similarly, we admit that individ-
uals who earn capitalist income may receive it from a variety of firms. But at
the aggregate level, we hypothesize that earning capitalist income is related to
hierarchical class structure. This is the hypothesis that I test.

4.3.3 Measuring Hierarchical Power

To test the capitalist gradient hypothesis, we need to measure hierarchical power.
What is hierarchical power? 1 define it as the ability to control subordinates
within a hierarchical chain of command. Unlike the more general concept of
‘social power’, hierarchical power is easier to pin down and quantify. This is
because the chain of command structure of a hierarchy clearly delineates who
has control over whom. A hierarchy is nothing but a nested set of power relations
between superior and subordinates (ruler and ruled). Itis a control structure that
concentrates power at the top [48].

I propose that one’s power within a social hierarchy is proportional to the
number of subordinates under one’s control. I put this in formula form as:

hierarchical power = number of subordinates + 1 4.1)

The logic of this equation is that all individuals start at a baseline power of 1,
indicating that they have control over themselves. Power then increases linearly
with the number of subordinates.
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Figure 4.11: Measuring

*In 2017, ESOPs had total assets of roughly $1.3 trillion [81], while total US market capi-
talization was roughly $30 trillion, according to the Russel 3000 index.
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As an example, suppose we want to find the hierarchical power of the red
individual in Figure 4.11. This person has two direct subordinates, each of whom
have 2 subordinates. Thus the red individual has control over 6 subordinates in
total, mean his/her hierarchical power is 7. The general form of a branching
hierarchy means that hierarchical power increases exponentially with rank.

4.3.4 Testing the Capitalist Gradient Hypothesis (Part 1)

If the capitalist gradient hypothesis is correct, we should be able to find evi-
dence that capitalist income fraction increases with hierarchical power. I test
the gradient hypothesis using CEO income data. This data is convenient for two
reasons. First, CEO income data is easy to obtain. US regulation requires that
public companies disclose CEO compensation. Second, we can estimate a CEO’s
hierarchical power without any knowledge of the firm’s hierarchical structure.
Under the assumption that the CEO holds the top hierarchical position in a firm,
it follows that their hierarchal power is equivalent to the number of employees in
the firm.

This thinking is visualized in Figure 4.12. If a firm has x employees, x — 1
of them will be subordinate to the CEO. Since hierarchal power is defined as the
number of subordinates plus one, the CEO’s hierarchical power is simply firm
size x. Thus, if we have data for firm size, we automatically have data for CEO
hierarchical power.

So how do we calculate the ‘capitalist’ component of CEO income? I define
the CEO capitalist income fraction as the portion of total income received from
stock options:

Lo . Income from Stock Options
CEO Capitalist Income Fraction = - 4.2)
Total Compensation

Unlike cash compensation, there are many different ways to value stock options
[82-84]. This means that CEO capitalist income fraction has some inherent
ambiguity. However, the nuances of stock option valuation do not concern me
here. Instead, I am interested in general trends in CEO compensation. For this
task, the standard methods for stock option valuation will do just fine. I use CEO
income data from the Execucomp database. The data series and their underlying
methods are discussed in Appendix C.3.

Figure 4.13 shows the resulting relation between capitalist income fraction
and firm size for roughly 40,000 American CEOs over the years 1992-2015. Two
important findings emerge. Firstly, the capitalist fraction of CEO income tends
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Figure 4.12: CEO Hierarchical Power

This figure shows the relation between firm size and CEO hierarchical power. Each

hierarchy represents a different firm, with the CEO at the top (red). If hierarchical

power is defined as the number of subordinates + 1 (Eq. 4.1), CEOs have hierarchical

power equal to firm size.
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Figure 4.13: Capitalist Income Fraction of US CEOs

This figure plots the relation between capitalist income fraction and firm size for roughly
40,000 American CEOs over the years 1992-2015. Assuming that CEOs sit at the top of
the corporate hierarchy, firm size is a direct indicator of CEO hierarchical power. The

median (P50) and interquartile range (P25-P50) for capitalist income fraction are cal-

culated using logarithmically spaced firm-size bins. The dashed line indicates the linear

regression used for modeling purposes. Data comes from Execucomp and Compustat.

For methods, see Appendix C.3.
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to increase with firm size (and hence hierarchical power). Secondly, capitalist
income fraction tends towards zero for CEOs in very small firms (fewer than 10
employees). These results are consistent with the capitalist gradient hypothesis
— they support the idea that earning capitalist income is a gradient function of
hierarchical power.

4.3.5 Testing the Capitalist Gradient Hypothesis (Part 2)

The evidence from US CEOs begs a question: does the relation between CEO
capitalist income fraction and hierarchical power generalize to the broader US
population? While data constraints stop us from answering this question di-
rectly (which is why we turned to CEO data in the first place), we can answer it
indirectly by using the hierarchy model.

I do this by using the CEO data to create a simple function relating capitalist
income fraction to hierarchical power. Once I have this function, I plug it into
the hierarchy model and endow each individual with a capitalist income. I then
check the model’s results against US data. If the model produces results that
are way off the mark, we know that the CEO results do not generalize to the
whole population. However, if the model produces results that are consistent
with US data, this is indirect evidence that capitalist income fraction increases
with hierarchical power in the wider US population.

The first step is to idealize the Figure 4.13 trend between CEO capitalist
income fraction and hierarchical power. The simplest interpretation of this trend
is that CEO income fraction increases linearly with the logarithm of hierarchical
power. I fit the CEO data with a one-parameter logarithmic function, resulting in
the ‘Modeled Trend’ line shown in Figure 4.13. This gives the following function
relating capitalist income fraction (Kj,,.) to hierarchical power (P):°

Ky = 0.051n(P) (4.3)

This function is naive in the sense that it implies a deterministic relation
between hierarchical power and capitalist income fraction — something that
certainly does not exist in the real world. However, models are always sim-
plifications, and it is often useful to simplify a noisy (stochastic) trend with a

> The discerning reader may note that, since a logarithmic function is uniformly increasing,
Eq. 4.3 permits capitalist income fraction greater than 1. In practice, such results do not occur
because the model does not permit firm sizes greater than 2.3 million — the largest US firm that
has ever existed (Walmart, circa 2015). For this maximum hierarchical power of 2.3 million, Eq.
4.3 yields a capitalist income fraction of about 0.7.
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Figure 4.14: A Landscape View of the Capitalist Gradient Model
This figure visualizes the capitalist gradient model as a landscape of firms. Each pyramid
represents a firm, with size indicating the number of employees. Hierarchical rank is
indicated by height, and capitalist income fraction by color.

deterministic one. If the results are good, we can add more realism later. If the
results are bad we throw away the model.

The next step is to plug this equation into the hierarchy model. We calculate
the hierarchical power of each individual in the model (see Appendix C.4) and
then use Eq. 4.3 to calculate the capitalist fraction of their income. The result-
ing capitalist gradient model is visualized in landscape form in Figure 4.14. As
expected, capitalist income fraction is tightly related to hierarchical rank.

If the CEO capitalist income trend is generalizable, the capitalist gradient
model should produces results that match US data. So does it? Figure 4.15
compares the model to the United States. Let’s begin with the relation between
capitalist income and total income size. This is effectively the relation between
personal and functional income distribution — something that I have proposed
that hierarchy can unify. Figure 4.15A plots Thomas Piketty’s data showing how
US capitalist income fraction increases with income percentile [71]. As illus-
trated by the inset plot (which uses a linear x-axis scale), there is an explosion
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Figure 4.15: Comparing the Capitalist Gradient Model to US Data

This figure compares the income distribution generated by the capitalist gradient model
to US data. Panel A shows how capitalist income fraction increases with income per-
centile (ranked by total income). The inset plot uses a linear x-axis scale, while the
main plot uses an inverted logarithmic scale of top incomes. Note that US empirical
data has ‘steps’ that correspond to the bins in the source data. The blue line and shaded
regions indicate the model’s median and 95% range, respectively. For panels B, C and D,
US capitalist income is defined as the sum of income from dividends and interest. Data
covers the years 1990 - 2014. Panel B shows the size distribution of capitalist income.
The model data is normalized to have mean income in the same range as the US data.
Panel C shows the inequality of capitalist income, as measured by the Gini index, while
Panel D shows capitalist income inequality as measured by the income share of the top
1%. Panel E shows the capitalist share of total (national) income. For comparison, I
also show the dividend and net interest share of US income. For sources and methods,
see Appendix C.1.
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of capitalist income that occurs in the topmost income percentiles. Evidently,
those who earn very large incomes are overwhelmingly capitalists (and vice
versa). The main panel spreads out this explosion by using an inverted log-
arithmic x-axis scale. Two different US trend-lines are shown. The upper line
includes capital gains in the calculation of capitalist income, while the lower line
does not. (The step-wise nature of these curves reflects Piketty’s income bins.)
Like the US data, the capitalist gradient model predicts an explosion in capitalist
income amongst top earners.

Moving on, Figure 4.15B shows the size distribution of US capitalist income.
For this graph (as well as Fig. 4.15C, D and E ), I define capitalist income as
the sum of income from dividends and interest. Although many people do earn
some capitalist income, the amount is usually inconsequentially small. This fact
is reflected in the inset panel, which plots the capitalist income distribution on
a linear scale. Nearly all reported capitalist incomes are lower than $5000. In
order to see the tail of the distribution, the main plot uses a log-log scale. Again,
the model is consistent with US data. To get these results, I do nothing but index
the model data so it has the same mean as US data. Without tuning it to do so,
the model effectively reproduces the tail of US capitalist income distribution.

How about capitalist income inequality? Figure 4.15C and D show the Gini
index and top 1% share of capitalist income, respectively. Just to be clear, the
latter metric captures the share of total capitalist income held by the top 1%
of reported capitalist incomes. First off, note how unequal US capitalist income
is. The Gini index hovers around 0.9 (the maximum is 1), while the top 1% of
capitalists earn about 40% of total capitalist income. The model reproduces this
staggering income share of the top 1%, but falls short with the Gini index. Why?
Part of the problem can be seen in Figure 4.15B — the model produces slightly
too many capitalist incomes between $2000 to $5000.

However, the primary problem has to do with the function used to determine
capitalist income (Eq. 4.3). Capitalist income is assumed to increase linearly
with the logarithm of hierarchical power. Since log(1) = 0, all individuals with
a hierarchical power of 1 (the lowest amount possible) will have exactly zero
capitalist income. When calculating inequality, these null incomes are (by con-
vention) excluded. If we adjust the model slightly so that instead of having no
income, these individuals have a tiny capitalist income, we get Gini index results
that match US data. See Appendix C.6 for more details of this adjustment.

Lastly, Figure 4.15E shows the capitalist share of total (national) income.
The model produces a capitalist income share that is slightly lower than (but in
a similar range as) the US data (from 1992-2014). For future reference, I also
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include the individual components of US capitalist income. (In section 4.4, I
model historic trends in the dividend share of national income).

To summarize, the capitalist gradient model produces results that closely
match US empirical data. This is indirect evidence suggesting that capitalist
income fraction scales with hierarchical power in the general US population.

4.3.6 Property, Power, and Income

The results shown in Figure 4.13 and 4.15 are preliminary, and should be treated
with appropriate uncertainty. That being said, I want to reflect on their poten-
tial significance. In effect, the capitalist gradient model connects three things.
It suggests that hierarchical class structure, ownership class structure, and per-
sonal income distribution are all related. Put another way, hierarchical elites,
capitalists, and top earners are all the same people.

What are we to make of this hypothesized relation between authority, prop-
erty rights, and income? One interpretation is that it is nothing new. Suppose,
when speaking about a feudal society, I stated that hierarchical elites, aristocrats,
and the very rich are all the same people. This would be nothing particularly
controversial. We are quite comfortable concluding that historical societies had
a ruling class [85]. But many would bristle at that thought in our own society.
Yet consider Reinhard Bendix’s description of the relation between authority,
property rights, and income in German feudal society. He writes:

governmental functions were usable rights which could be sold or leased at
will. For example, judicial authority was a type of property. The person who
bought or leased that property was entitled to adjudicate disputes and receive
the fees and penalties incident to such adjudication. [86] (p. 149)

If we paraphrase Bendix, we arrive at the same reasoning that I used to derive
the capitalist gradient hypothesis. Building on the work of Nitzan and Bichler,
I suggested that ‘capitalist authority’ is a ‘type of property’. The person who
buys this property is ‘entitled’ to wield hierarchical power and ‘receive income’
in return. From this reasoning came the hypothesis that capitalist income should
be related to hierarchical rank and power.

From the perspective of mainstream economic theory, this hypothesis is quite
radical. It undermines the ubiquitous assumption that capitalists earn income
from a productive asset. But given Bendix’s comments on feudal society, the
capitalist gradient hypothesis may be quite conservative. Why? Conservatism
implies a lack of change — a maintenance of the same order. The capitalist gradi-
ent hypothesis may be conservative because it suggests that income distribution
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in modern capitalist societies might not be as different from past feudal societies
as we would like to think.

4.4 A Hierarchical Redistribution Hypothesis

I turn now from modeling the static distribution of income, to modeling inequal-
ity dynamics. Over the last three decades, there has been an explosion in inequal-
ity in the United States (with less pronounced increases in other countries). I set
aside the difficult ‘why’ question, and instead focus on the how’ question. How
did this increase occur? Does it have any relation to firm hierarchy? I think
that it does. There is good evidence suggesting that the US has undergone a
hierarchical redistribution of income — a transfer of income from the bottom to
the top of firm hierarchies. I call this the ‘hierarchical redistribution’ hypothesis,
and I test it using the hierarchy model.

4.4.1 The Evidence

Let’s look at some evidence that hints at hierarchical redistribution. One trend
that slaps us in the face is the post-1980 explosion in the CEO pay ratio. As
shown in Figure 4.16A, this explosion corresponds closely with increases in the
top 1% income share (Fig. 4.16B). Assuming that CEOs sit at the top of the
corporate hierarchy, the increasing CEO pay ratio suggests that hierarchical re-
distribution has occurred.®

Figure 4.16D gives more evidence hinting at hierarchical redistribution. Here
I show trends in the power law exponent of the top 1% of US incomes. This ex-
ponent quantifies the ‘fatness’ of the distribution tail (a smaller exponent means
a fatter tail). This analysis demonstrates that rising top income inequality is as-
sociated with a fattening of the tail of the income distribution. What does this
have to do with hierarchy? According to our model, hierarchy plays a dominant
role in shaping the tail of US income distribution (section 4.2). Therefore, it is
plausible that a fattening tail might be caused by hierarchical redistribution.

The connection between CEO pay and income inequality has been widely
discussed [90-94], as has the fattening of the income distribution tail [8, 16,
95]. Less recognized, however, is the relation between rising inequality and the

® Mishel and Davis [87] note a strong correlation between CEO compensation and stock
market returns. This raises the possibility of connecting income redistribution to capital accu-
mulation, something that has been theorized by Bichler and Nitzan [88]. However, such an
investigation is beyond the scope of this paper.
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Figure 4.16: Historical Income Distribution
Trends in the United States

This figure shows four trends in US income distribu-
tion that hint at hierarchical redistribution. Panel A
shows the trend in the CEO pay ratio [89]. This ra-
tio is calculated using CEO income in the 350 largest
US firms (ranked by sales), compared to the average
income of workers in the firms’ respective industry.
Panel B shows the trend in US inequality, as mea-
sured by the top 1% income share. The shaded re-
gion indicates the range of 17 different estimates for
the top 1% income share. The line represents the
median of these estimates. Panel C shows the trend
in the dividend share of national income. Panel D
shows the fitted power-law exponent for the top 1%
of incomes. A smaller exponent indicates a ‘fatter’
tail. The grey region indicates the range of estimates
(when different series are available). The line indi-
cates the median estimate. For sources and methods
see Appendix C.1.



A Hierarchical Redistribution Hypothesis 127

redistribution of functional income. As shown in Figure 4.16C, changes in the
US dividend share of national income are strongly correlated with changes in
the top 1% income share. The correlation coefficient ranges between 0.82 and
0.90, depending on the choice of data. Is this trend also related to hierarchical
redistribution? The capitalist gradient model suggests that it might be.

The capitalist gradient model proposes that individuals become more capi-
talistic as hierarchical rank increases (section 4.3). This model implies that a
bottom-to-top redistribution of pay within firm hierarchies should correspond
with an increase in the capitalist share of total income. Why? Top-ranked indi-
viduals are hypothesized to have a greater proportion of capitalist income rel-
ative to bottom-ranked individuals (regardless of the relative size of top and
bottom incomes). If top-ranked individuals increase their share of the pie, the
capitalist share of total income should increase as well.

To summarize, the trends in Figure 4.16 suggest a hierarchical redistribution
of income within firms. To test this hypothesis, I use the hierarchy model.

4.4.2 Methods

The idea behind my test of the hierarchical redistribution hypothesis is quite
simple. If the trends in Figure 4.16 are caused by a hierarchical redistribution
of income, we ought to be able to replicate them with the hierarchy model. I
attempt this replication by varying the rate at which modeled pay increases with
hierarchical rank. I call the parameter that controls this rate the ‘hierarchical
pay-scaling parameter’. See Appendix C.5 for a technical discussion about what
this parameter does.

Varying the hierarchical pay-scaling parameter changes the returns to hier-
archical rank, and by extension, the returns to hierarchical power. This effect is
illustrated in Figure 4.17. When the pay-scaling parameter is small (indicated
by the color red), relative pay increases very slowly with hierarchical rank and
power. But when the pay-scaling parameter is large (indicated by blue), there
is an extremely rapid increase in pay with hierarchical rank and power.

To test the hierarchical redistribution hypothesis using the hierarchy model, I
restrict the scope of analysis to the years 1965 onward. I do this for two reasons.
Firstly, the CEO pay ratio data begins in 1965. Secondly, the model assumes an
unchanging firm size distribution. From the late 1960s onward this assumption
is valid — the US firm size distribution changed very little. However, prior to the
1960s the US firm size distribution changed rapidly [69], violating the model’s
assumptions.
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Figure 4.17: Changing How Income Scales with Hierarchical Rank and
Power

This figure shows the results of the hierarchy model when the hierarchical pay-scaling
parameter is allowed to vary (over different model iterations). Panel A shows how mean
pay (relative to the bottom hierarchical level) increases by hierarchical rank. Different
pay-scaling parameters are indicated by color. Panel B shows the same effect, but with
hierarchical power (where hierarchical power is defined as the number of subordinates
+ 1). Individuals are grouped into log-spaced bins by hierarchical power. Note that
the trends in both panels become increasingly noisy for the very top hierarchical ranks
and very large hierarchical power. This is because individuals with very high rank are
extremely rare, so the mean encompasses relatively few individuals. In both plots, hor-
izontal jitter’ is added to increase the visibility of all data points.

In this test, I vary only the hierarchical pay-scaling parameter. Inter-firm
dispersion and intra-hierarchical level dispersion remain at the levels implied by
modern case study and Compustat data. I continue to use the capitalist gradient
model to decompose income into capitalist and labor components. Importantly,
I do not vary the function that determines capitalist income fraction (Eq. 4.3).

To model the data in Figure 4.16, I add two assumptions to the hierarchy
model. The first assumption is used to model the dividend share of national
income. The capitalist gradient model predicts total capitalist income only, and
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does not differentiate between interest and dividends. To model the dividend
share of income, I assume that dividends constitute exactly half of capitalist
income. This 50-50 split between interest and dividends is what the US has
averaged over the last century (see Fig. 4.15E for the post-1990 split). Although
there have been important historical variations in the composition of capitalist
income [49], these are not included in the model.

The second assumption has to do with modeling the CEO pay ratio. The
empirical CEO pay ratio in Figure 4.16 is calculated using CEO pay in the top
350 US firms, ranked by sales. The average pay of employees is calculated using
average pay in each firm’s respective sector [89]. The model has neither sales, nor
sectors, nor explicit job titles. I assume that CEOs are the top-ranked individual
in each firm hierarchy. I calculate the model’s CEO pay ratio using CEO income
in the top 350 firms, ranked by total payroll. 1 use payroll as a proxy for sales,
since the two metrics are highly correlated (see Appendix C.3). Because the
model has no sectors, I use the average pay in the whole model to calculate
average worker pay.

4.4.3 Results

Results of the hierarchical redistribution model are shown in Figure 4.18. Be-
cause the model has no time element, I compare only the relation between
trends. (Note that the top 1% share is the common x-axis in all panels). Each
panel shows both US empirical and model relations. As in Figure 4.17, variation
in the hierarchical pay-scaling parameter is indicated by color. The take-home
message here is that, by varying hierarchical pay, the hierarchy model is able to
reproduce the general form of the empirical trends identified in Figure 4.16.

To be sure, the model’s results are not perfect. In general, the model tends
to underestimate the top 1% income share. This causes a leftward shift in the
modeled relations (relative to the empirical ones). The hierarchy model is heav-
ily dependent on the Compustat database, which is biased towards large firms.
I have hypothesized that this bias causes the model to underestimate inter-firm
income dispersion. In Appendix C.6, I show that increasing inter-firm dispersion
(so that the model almost perfectly reproduces the US distribution of income)
improves the accuracy of the hierarchical redistribution model.

Another problem is that the model’s dividends versus top 1% slope is not
quite correct. This slope turns out to be heavily dependent on the particular
functional relation between hierarchical power and capitalist income fraction.
While the function that I use is based on empirical data (see section 4.3), there
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Figure 4.18: The Hierarchical Redistribution Model vs. US Data

This figure compares model results to historical trends in US income distribution. Model
results are produced by varying the hierarchical pay-scaling parameter, indicated by
color. Each colored point represents a single model iteration. US empirical data is shown
in black, with horizontal error lines indicating the range of 17 different estimates for the
top 1% income share. The point indicates the median of these estimates. Panel A plots
the CEO pay ratio against the top 1% share, while panel B plots the dividend share of
national income against the top 1% share. Panel C plots the fitted power law exponent
of the top 1% of incomes against the top 1% income share. For sources and methods,
see Appendix C.1.
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is tremendous uncertainty in this relation. More empirical research is needed to
understand the source of this model discrepancy.

4.4.4 Discussion

While we should always be cautious about drawing conclusions from a model,
I want to offer my thoughts on the significance of these results. There has been
a tendency, in political economy, to explain human income distribution in terms
of ‘natural law’. For instance, John Bates Clark began his foundational text on
marginal productivity by declaring: “It is the purpose of this work to show that
the distribution of the income of society is controlled by a natural law” [75]. This
tendency was only strengthened when Pareto discovered the ubiquitous power
law scaling of top incomes [1].

But what is curious about ‘natural law’ theories is that they are almost always
atomistic. Thus, Clark showed that perfectly competitive markets distribute in-
come according to ‘natural law’. But leviathan governments are mysteriously ab-
sent from this picture. In a sense, the term ‘natural law’ is used as a euphemism
for ‘in the absence of concentrated power’. Thus, ‘natural law’ explanations of
skewed income distribution tails are typically based on atomistic premises, in
which there are isolated individuals but no institutions [5, 18]. From this per-
spective, power is a distortion.

But what if concentrated power is the reason that income distribution has
a power law tail? This is the story told by the hierarchy model. This model
suggests that hierarchy — a form of concentrated power — is responsible for
producing the fat tail of US income distribution. The same model suggests that
changes in the tail are a result of a hierarchical redistribution of pay. Thus, hier-
archy provides a potentially potent tool for understanding both the regularities
of income distribution over time and space, but also the variation. I propose that
the regularity of power-law income distribution tails owes to the ubiquity of so-
cial hierarchy. Conversely, I propose that variation in the tail owes to hierarchical
redistribution.

I conclude by visualizing the hierarchical redistribution that has occurred in
the United States (as suggested by the hierarchy model). Figure 4.19 shows
two modeled versions of the United States. On top is the 1965 version. On
the bottom is the 2015 version. The difference between the two is subtle — it
is almost completely isolated to the tops of large firms. Here we see a massive,
order of magnitude increase in relative pay — a clear redistribution of income to
top-ranked individuals. If the model is correct, we can conclude that the US has
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United States Circa 1965

United States Circa 2015

Figure 4.19: A Visualization of US Hierarchical Income Redistribution

This figure shows the model’s representation of historical hierarchical income redistri-
bution in the United States. The top model represents the US in 1965 while the bottom
represent the US in 2015. I create these models by choosing the hierarchical pay-scaling
parameter that best matches the US CEO pay ratio, top 1% and dividend share data in
the year in question. The difference between the two model’s is mostly visible at the tops
of large firms as an order of magnitude increase in the pay of top-ranked individuals.
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undergone a massive hierarchical redistribution of income in the last 30 years.

4.5 Conclusions: Modeling from the Top Down

Many economists have an understandable desire to model human society from
from the ‘bottom up’ [7]. This means that they seek to explain complex so-
cial structures solely in terms of the interaction of individuals. The bottom up
strategy is a noble one, in principle. It would be a triumph of science if we
could explain macro-level income distribution based purely on the interactions
of individuals. In the same way, it would be a triumph of science if we could
understand the emergence of consciousness based purely on the interactions of
atoms and molecules. This is a noble pursuit in principle. In practice, however,
it is misguided.

The problem is two-fold. The first problem is computational feasibility. Sup-
pose we had a highly accurate model of the human psyche, comparable to the
accuracy of quantum mechanics. If we did, it’s highly likely that meaningful
questions would be computationally unfeasible. Even though it is the general
scientific consensus that consciousness emerges from matter alone (i.e. there is
no mind-body dualism) I know of no attempt to simulate consciousness using
the laws of physics. The problem is simply too difficult. Quantum physics is so
computationally complex that it is difficult to simulate large molecules, let alone
brains.

The second problem is that to build a model from the bottom up, we need
a highly accurate model of the ‘fundamental particles’. We have a pretty good
model of atoms. Do we have a good model of the human psyche? Hardly. I
believe we should be humble and admit that we know very little about human
behavior. As a consequence, when we model from the bottom up, we are essen-
tially groping in the dark. We must make blind assumptions about how agents
behave. The problem is that the entirety of the modeling effort depends on these
assumptions. The model may very well give good results — it may seem to ‘ex-
plain’ the social phenomena in question. But if the underlying assumptions are
incorrect, the entire model is wrong.

The dream of explaining income distribution from the bottom up is a noble
one. The problem is that we are hopelessly far from being able to do this the right
way. The bottom up models that do exist make extremely naive assumptions
about how humans behave. While these models give good results, it is a fallacy
to think that this validates their underlying assumptions.

The alternative to the bottom-up approach is to model from the top down.
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What does this mean? Instead of having social structure emerge from the bottom-
up actions of individuals, we (the modelers) impose structure from the top down.
In essence, we impose structure on society and then explore the consequences.
The origin of this structure is left unexplored. The top-down approach is useful
because it allows realism and ignorance to coexist. A realistic model of income
distribution must have institutions — they are simply too important to ignore.
But we know very little about how and why institutions form. The top-down
approach allows us to model institutions without having any idea of why they
exist.

This is the philosophy that underlies the hierarchy model. The model is based
on two observations of the real-world: (1) firms are the dominant institution
for organizing paid human activity (in capitalist societies); and (2) firms are
hierarchically organized. The model takes these facts as given, and explores
their consequences.

The central finding of the hierarchy model is that hierarchy shapes the tail
of the income distribution. According to our model, it is hierarchy that causes
the distinctive power-law scaling of top incomes. This is important because ex-
plaining the power-law distribution of top incomes has been one of the primary
concerns of income distribution modelers. The over-whelming majority of power
law generating models are based on atomistic premises. As far as I am aware,
the hierarchy model is the only power law generating model that includes insti-
tutions.

But this is not all. The hierarchy model is, to my knowledge, the only power
law generating model that is completely empirically grounded. As I have stated
many times, the hierarchy model amounts to an extrapolation of real-world evi-
dence. The model takes the little information of firm hierarchy that does exist,
and extrapolates it to create a large-scale simulation of the US economy. To risk
overstating this, there is nothing in the model that is not implied by empirical
data.

The story that the hierarchy model tells is this: the power-law distribution
of top incomes arises from concentrations of power. The model suggests that
without large, hierarchically organized firms, there would be no power law dis-
tribution of top incomes. This finding is significant in its own right, but made
more so by its stark contrast with mainstream, neoclassical economic theory.
James T. Peach summarizes the neoclassical approach: “Individual productivity
and exogenously determined shifts in supply and/or demand curves determine
distributive shares. ... [T]here is no power and there is no income distribution
problem” [57]. If the hierarchy model is correct, concentrated power is not an
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Figure 4.20: The Rich and Powerful — Hierarchical Power and Top Incomes

This figure plots average hierarchical power (number of subordinates + 1) against in-
come percentile for individuals in the hierarchy model of the United States. The shaded
regions indicates the 95% range, while the line indicates the median. In order to show
the entire range of data, the main panel uses a logarithmic scale on the y-axis. The inset
panel uses a linear y-axis to illustrate how rapidly hierarchical power increases in the
top 1% of incomes.

aberration — it is the norm. Based on the model results, I have suggested that
power-law scaling of top incomes is ubiquitous because concentrated power (in
the form of hierarchical institutions) is also ubiquitous.

To put matters simply, the hierarchy model gives new meaning to the phrase
‘rich and powerful’. This is made clear by Figure 4.20. Here I plot average hier-
archical power against income percentile for the hierarchy model of the United
States. Two completely different populations emerge — those with power and
those without. The vast majority of people have very little hierarchical power.
But things change drastically for the small minority in the upper income per-
centiles. Here there is an explosion of hierarchical power. This power, I believe,
is the origin of the great inequalities that plague human society (now and in
the past). Hierarchical power gives preferential access to resources, plain and
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simple.

That being said, there is no fixed relation between income and hierarchical
power. Gerhard Lenski [55] gives the curious example of Robert McNamara’s
move from the Ford Motor Company to the position of US Secretary of Defense.
McNamara’s new position had far more power, and yet his income did not in-
crease. Instead, it decreased by an order of magnitude. Why? These are ques-
tions we must ask. Unlike Clark’s theory of marginal productivity, a theory of
income distribution based on hierarchy and power has no ‘laws’. Things can and
do change.

To conclude, the hierarchy model is a first attempt at quantitatively studying
the distributional consequences of hierarchical organization. If nothing else, the
model suggest that hierarchy must be taken seriously — it is a grave mistake to
‘assume’ hierarchy away when building income distribution models. If we want
to alleviate income inequality, we need to understand it. This understanding
will undoubtedly require models, but these models must be rooted in the real
world — a world in which concentrated power appears to be the norm.
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Chapter 5

Conclusion: A Glimpse of a Synthesis?

The great success of the natural sciences has been achieved substantially by the
reduction of each physical phenomenon to its constituent elements, followed by the
use of the elements to reconstitute the holistic properties of the phenomenon.

— E.O. Wilson [1]

As Wilson observes, science has two parts — reduction and synthesis. To un-
derstand a complex phenomenon, it is necessary to break it down into smaller
parts. Once we understand these simple parts, the hope is that we can synthesize
previously disparate branches of knowledge. In this dissertation, I have used so-
cial hierarchy as the ‘constituent element’ of social structure. I have shown that
hierarchy plays an important role in many aspects of human society, from institu-
tion size, to energy consumption, to income distribution. This can be considered
a ‘reduction’ (albeit a messy and incomplete one). Is there a corresponding syn-
thesis? I think that there is. I believe that hierarchy offers the glimpse of a
synthesis between economic growth (understood in biophysical terms) and in-
come inequality. I conclude by discussing this synthesis. But before doing so, I
want to reflect on the epistemology of ‘economics from the top down’.

5.1 What is the Unit of Analysis in Economics?

When pursuing a reduction, the difficult question is this: how far down do we
go? How do we know when we have isolated the ‘constituent elements’ of a
system? This is a far more difficult question than many scientists would like
to admit. Why? Because the answer depends both on what we are trying to
understand, and on the limitations of our present knowledge.

As an example of this difficulty, consider how we might seek to understand
cellular metabolism. If we chose a unit of analysis that is too large, we will reach
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a dead end. It is obviously impossible to understand cellular metabolism without
breaking the cell into smaller components (such as organelles and metabolic
chemicals). But if we go too far down, we can’t see the forest for the trees.
Thus, it is not useful (at the present time) to reduce cellular metabolism to the
level of sub-nuclear particles (i.e quarks). The art of doing science involves
finding the happy medium — the unit of analysis that is small enough but not
too small. And this happy medium should be flexible — it should change as
science progresses. Fifty years ago our understanding of cellular metabolism
stopped at the molecular level. But current evidence suggests that quantum
effects (electron tunneling) play a fundamental role in metabolism [2—4] (for a
non-technical overview, see [5]).

Because the ‘how far down’ question is so difficult, scientists have developed
‘good tricks’ [6] to make life easier . The principal ‘good trick’ is the academic
discipline — a partitioned realm of investigation with an agreed upon unit of
analysis. Disciplines rely on rules of thumb — something like: “if we want to
understand phenomenon x, we agree that it is useful to focus on unit y”. This
trick is useful, because it allows science to proceed without the burden of con-
stantly answering difficult epistemic questions.

While useful, we should remember that this good trick is precisely that — a
trick. The problem comes when rules of thumb are treated as laws of the land.
This is what has happened in economics. Consider Brennan and Tullock’s dog-
matic assertion used as the epigraph for this dissertation: “in modern economics
... the ultimate unit of analysis is always the individual; more aggregative anal-
ysis must be regarded as only provisionally legitimate [7] (emphasis added).
In economics, a rule of thumb — focusing on the individual — has become a
dogma.

Of course, the problem is not unique to economics. It is instructive to look at
ongoing debates in other disciplines to get a sense for this type of epistemolog-
ical problem (and to dispel the fog of disciplinary myopia that often pervades
economics [8]). In Chapter 1, I quoted E.O Wilson’s withering critique of mod-
eling practices in biology [1] . Recently, Wilson has been involved in a heated
debate about the proper unit of analysis in evolutionary biology [9]. The debate
is over the validity of ‘inclusive fitness’ theory, which seeks to explain the origin
of sociality and altruism at the level of the individual. I highlight this controversy
in evolutionary biology because it parallels the problem in modern economics.
Criticizing inclusive fitness theory, Allen, Nowak, and Wilson observe:

The concept of inclusive fitness' arises when one attempts to explain the evo-
lution of social behavior at the level of the individual. For example, inclusive
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fitness theory seeks to explain the existence of sterile ant workers in terms of
the behaviors of the workers themselves. The proposed explanation is that
workers maximige their inclusive fitness by helping the queen rather than pro-
ducing their own offspring. ... Inclusive fitness theory attempts to find a uni-
versal design principle for evolution that applies at the level of the individual.
The result is an unobservable quantity that ... has no predictive or explanatory
value. [10] (emphasis added)

If we paraphrase Allen, Nowak, and Wilson, we arrive at a very cogent cri-
tique of standard economic theory. Like inclusive fitness theory, standard eco-
nomic theory attempts to explain social phenomena at the level of the individual.
To do so, the theory assumes that individuals maximize utility. The goal is to find
a universal design principle for social structure that applies at the level of the
individual. As critics have observed [11-14], the result is a theory based on an
unobservable quantity that has no predictive or explanatory value.?

The concept of individual maximizing behavior has proved seductive for bi-
ologists and economists alike. Its great advantage is that it reduces the complex-
ities of individual behavior to a single mathematical function that is to be opti-
mized. This has the convenient effect of making models analytically tractable.
And yet no one has ever observed this internal maximizing function — it is con-
veniently unobservable. And attempts to measure it externally in humans (by
measuring the acceptance of monetary pay offs) have failed. Humans, it seems,
do not maximize external pay offs [21]. Moreover, recent work in evolutionary
biology suggests that, in general, natural selection does not lead individuals to
act ‘as if’ maximizing any quantity [22].

Given the failures of the individual maximizing model, what are we to do?
There are two choices: (1) revise our model of individual behavior; or (2)
change the unit of analysis. The problem with the first solution is that when we
abandon the maximizing model, we are confronted with a bewildering sea of

! In evolutionary biology, an organism’s ‘fitness’ is defined as its expected number of offspring.
Inclusive fitness adds to this concept the expected number of offspring of an individual’s close
relatives. The idea is that, by helping close relatives reproduce (instead of themselves), organ-
isms can maximize the spread of their genes. The problem, according to Nowak et al., is that
other than in contrived situations, inclusive fitness cannot be calculated [9].

2 While there is a strong parallel between the critique of inclusive fitness theory and the cri-
tique of neoclassical marginal utility theory, the criticism has played out quite differently in each
discipline. In biology, the critique of inclusive fitness [9] was published in a prestigious scientific
journal (Nature), with much ensuing discussion [15-19]. In contrast, critiques of neoclassical
economics are more or less excluded from mainstream economic journals. Seminal analysis by
Joe Francis shows that economics has become a discipline largely devoid of debate [20].
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complexity. Humans (and other organisms) likely have numerous goals. Some
of them are conscious, and many of them are not. Moreover, these goals can be
mutually conflicting, and they can change over time. Lastly, in humans, goals
are influenced by culture, and vice versa. It is hubristic to think that with our
present state of knowledge, we can capture this complexity in a model.

If revising our model of the individual is too difficult, that leaves changing
the unit of analysis as the only viable option. In evolutionary biology, Allen,
Nowak and Wilson argue that the way forward is to take the focus off individu-
als, and put it onto the gene [10]. Obviously this is not a fruitful way forward
for economic theory — human cultural evolution occurs orders of magnitude
faster than genetic evolution. Richard Dawkins has offered the meme as the cul-
tural equivalent of the gene [23]. A meme is a piece of information (an idea)
transmitted between humans. The problem with this sub-individual approach
is that it still requires an understanding of the individual. To understand the
transmission of ideas, one must have a theory of the mind.

Rather than move to a sub-individual unit of analysis, I have proposed that
we move the focus to a super-individual unit — hierarchical organization. My
contention is that social hierarchy is a useful (but not the ultimate) unit of anal-
ysis for understanding social phenomena. In analytical terms, hierarchy is con-
venient because its structure is simple — it is easy to model mathematically. But
unlike the model of the maximizing individual, the structure of a hierarchy is
observable.

Of course, mathematical simplicity is no guarantee that a unit of analysis is
useful. This is an empirical question. The principal aim of this dissertation has
been to show that focusing on hierarchy is a fruitful way to do empirical research.
Of course we should absolutely seek to understand how and why hierarchies
form, by appealing to a lower unit of analysis. But in the mean time, we can get
on with the investigation by taking hierarchical structure as an empirical given.
I have called this approach economics from the top down.

5.2 The Reduction

What I have done throughout this dissertation is to show that a wide variety
of social phenomena are connected to social hierarchy. In essence, this consti-
tutes a reduction — albeit a rough and incomplete one. I have reduced these
phenomena to the ‘constituent element’ of social hierarchy. Let’s review.

In Chapter 2, I found that increases in energy consumption (across both space
and time) are associated with a systematic increase in institution size. I showed
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A Hierarchy Model of Income Distribution

Social Hierarchy

Figure 5.1: A ‘Reduction’ Looking for a Synthesis

This figure shows how I conceive the big-picture structure of this dissertation. Each
of the three papers (Ch. 2-4) connect either biophysical economic growth or income
distribution to social hierarchy (this constitutes a sort of ‘reduction’). But this connec-
tion begs a question: are growth and income distribution also related? I explore this
possibility in Chapter 5.

that these changes can be understood as an overall increase in the hierarchical
structure of society. I gave a possible reason why this occurs: technological
change requires increasing social coordination which (due to human biological
limitations) is achieved through hierarchical organization.?

In Chapter 3, I explored the relation between hierarchical power and per-
sonal income. Measuring hierarchical power in terms of the number of subor-
dinates under one’s control, I found that income within firms scales strongly (in
both static and dynamic terms) with hierarchical power. Moreover, I found that
grouping individuals by hierarchical power affected income more strongly than
any other factor tested.

In Chapter 4, I explored the wider connection between hierarchy and in-

3 Commenting on my work, Bichler and Nitzan have offered an alternative explanation for
why hierarchy relates to energy consumption [24]. They propose that hierarchy is an unfor-
tunate byproduct of increasing energy consumption. They believe hierarchy formation results
from an innate human drive to accumulate power — a drive that is separate from the social
process of technological development. I welcome this alternative hypothesis. Since the energy-
hierarchy link is a very new empirical finding, it is wise to explore many possible explanations
for its existence. However, for the arguments in this chapter, the reason for the energy-hierarchy
connection is less important than the connection itself.
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come distribution. Using an empirically informed model, I found that hierarchy
plays a dominant role in shaping top incomes. The model suggested that the
power-law distribution of top incomes — a celebrated empirical regularity —
is a consequence of hierarchical organization. Moreover, I found that hierar-
chy seems to play a role in shaping the composition of top incomes, and the
dynamics of income inequality.

To summarize, I have shown that both biophysical economic growth and
income distribution can be reduced (again roughly and incompletely) to the
constituent element of social hierarchy (see Fig. 5.1). This hints at a tantalizing
link between growth and income distribution themselves.

5.3 A Synthesis of Growth and Distribution?

The cumulative findings in this dissertation suggest a relation between biophysi-
cal growth and income distribution. The basic idea is that increasing energy con-
sumption is associated with increasing hierarchical organization, which causes
the concentration of power and the concentration of income. Of course, the
idea that growth should lead to increasing inequality is not new. Henry George
thought as much a century ago:

Where the conditions to which material progress everywhere tends are most
fully realized — that is to say, where population is densest, wealth greatest, and
the machinery of production and exchange most highly developed — we find
the deepest poverty, the sharpest struggle for existence, and the most enforced
idleness. [25]

The growth-inequality link is also implicit in the surplus theory of social strat-
ification that is popular in anthropology and sociology [26-36]. While the
growth-inequality hypothesis is not new, the results in this dissertation allow us
to move from a qualitative to a quantitative discussion. In particular, the evi-
dence in Chapter 2 effectively provides an empirical relation between hierarchy
and energy consumption. With a few assumptions, we can use the hierarchy
model (developed in Ch. 4) to make concrete predictions about how the con-
centration of hierarchical power (and with it income) might change with energy
consumption. To my knowledge, this prediction is the first of its kind.

“In the surplus theory of social stratification, the thinking goes something like this. The ma-
jority of the population are ‘producers’ who produces more than they consume. This economic
surplus is controlled by a small group of elites. Therefore, as the surplus increases (via economic
growth), so does inequality. Unfortunately this approach has many problems. One is that it re-
quires differentiating between ‘producers’ and ‘non-producers’ (or productive and unproductive
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An Energy-Hierarchy Model

To explore the relation between energy and hierarchy, I take the hierarchy model
used in Chapter 4, and tack onto it the empirical relation between energy and
institution size discovered in Chapter 2. I call the result the ‘energy-hierarchy’
model. This model creates a simulated economy of hierarchical institutions ex-
actly like the original hierarchy model. However, this time I allow the institution
size distribution to vary (by changing the power exponent).

When institutions are very small, little hierarchical structure will exist. Con-
versely, when institution size is larger more hierarchical structure will exist. For
each different model iteration, I calculate mean institution size and then use the
energy-firm-size regression (shown in Fig. 2.1C) to predict the level of energy
consumption. Like the original hierarchy model, the energy-hierarchy model is
essentially an extrapolation. It takes the available evidence and extrapolates it to
make a prediction about how energy consumption should relate to hierarchical
organization. Using this model requires the following assumptions:

1. Institution size is distributed according to a power law. Changes in the
institution size distribution correspond to a change in the power law ex-
ponent.

2. The hierarchical structure of institutions is constant across time and equiv-
alent to that found in modern firm case studies (Appendix C.2).

3. The modern trend between energy use per capita and firm size is applica-
ble to non-capitalist societies (see Fig. 2.1 in Ch. 2 for this trend).

These assumptions are meant to allow exploratory analysis — they justify
projecting modern trends into the past. Are they realistic? Regarding assump-
tion 1, there is evidence that pre-capitalist societies had a power law distribution
of institution size. Obviously, what constitutes an ‘institution’ will change in dif-
ferent societies. In feudal societies, we might imagine that the feudal manor is

labor). But this cannot be done objectively [13]. Furthermore, the concept of surplus is impos-
sibly fuzzy [37]. Should it be measured in absolute terms — anything above bare subsistence
needs? If so, Milanovic shows that we should expect economic growth to be associated with
runaway inequality [38,39]. But this is not what has happened historically. Perhaps surplus
should be measured in relative terms? This would allow for changes in the standards of living
of the ‘producer’ population. Unfortunately this definition means that the size of the surplus is
dependent on the distribution of income. Needless to say, this relative view of surplus cannot be
used to make predictions about income distribution, since the measurement of surplus depends
on distribution in the first place.
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Subsistence Society

Energy Use per Capita ~ 5 GJ / Year

Industrial Society
Energy Use per Capita ~ 300 GJ / Year

Figure 5.2: Visualizing the Energy-Hierarchy Model

This figure shows the hierarchical structure of two hypothetical societies. Hierarchies
are visualized as pyramids (color indicates hierarchical rank). The top panel shows a
low-energy society that consumes 5 GJ of energy per capita per year —- not much more
than daily caloric food requirements. In such a society, the model predicts very little
hierarchical organization. In contrast, the bottom panel shows a high-energy indus-
trial society with energy use on par with the modern United States. Such a society is
predicted to have a considerable amount of hierarchical organization.
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the dominant institution. There is evidence that feudal manors were power-law
distributed. For instance Hegyi et al. find an approximate power law distribution
of serf ownership by nobles/aristocrats in 16th century Hungary [40]. Similarly,
Kahan finds a highly skewed distribution of serf ownership in 18th century Rus-
sia [41] (although this distribution is better fit with a lognormal function). In
hunter-gatherers societies, we might imagine that institutions consist of families,
clans, and tribes. Because hunter-gatherer societies are largely prehistoric, the
archaeological evidence is all that remains. On this front, recent evidence sug-
gests that hunter-gatherer settlement sizes had a power law distribution (in the
tail) [42]. While the evidence is limited, assumption 1 (a power-law institution
size distribution) seems reasonable.

What about assumption 2 (the hierarchical structure of institutions is con-
stant across time)? Unfortunately, we know very little about the ‘shape’ of hier-
archal institutions in pre-capitalist societies. What we do know is that in agrar-
ian and hunter-gatherer societies, there is a reliable scaling relation between
population size and the number of hierarchical levels of socio-political organi-
zation [43,44]. This is evidence that these societies were hierarchical. However,
I am not aware of any work on the micro-structure of hierarchy in pre-capitalist
societies. As such, assumption 2 is speculative.

Lastly, the assumption 3 (the modern energy-institution-size relation applies
to non-capitalist societies) is purely speculative at the present time. But given
an empirical trend, why not extrapolate it and see where it takes us?

To get an intuitive sense for what the energy-hierarchy model looks like, Fig-
ure 5.2 visualizes it in landscape form. I show the modeled hierarchical structure
of two very different societies. The top image shows a hypothetical subsistence
society that consumes 5GJ of energy per capita per year. (This is equivalent to
3200 Kcal per day — not much above metabolic needs of an average human).
In this subsistence society, the energy-hierarchy model predicts that very little
hierarchical organization should exist. In contrast, the bottom image shows a
hypothetical industrial society that consumes 300GJ of energy per capita per
year. This rate is on par with the modern United States. The model predicts that
such a society should have significant hierarchical organization.

A Prediction: Energy and the Concentration of Hierarchical Power

The most important feature of the energy-hierarchy model is that it makes a
quantitative prediction about how hierarchical power concentration should vary
with energy consumption. To make this prediction, I run the model many times,
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Figure 5.3: Hierarchical Power Concentration and Energy Use per Capita

This figure show the results of the energy-hierarchy model, produced by stochastically
varying the institution size distribution. Each dot indicates a different model iteration.
Shaded regions show the energy consumption range for various types of real-world so-
cieties. Sources: Qatar data comes from the World Bank (series EG.USE. PCAPKG.OE).
US total energy consumption is from HSUS, Tables Db164-171 (1890-1948) and EIA
Table 1.3 (1949-2012). US population is from Maddison [45] (1890-2009) and World
Bank series SPPOPTOTL (2010-2012). Roman Empire data comes from Malanima [46].
Human metabolic needs are assumed to range from 2000 Kcal to 2500Kcal per day.
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each with a different institution size distribution. For each iteration, I calculate
the Gini index of hierarchical power concentration (as I did in Fig. 3.4). Over
many iterations, the model produces the relation shown in Figure 5.3.

The results are interesting. Virtually all of the increases in hierarchical power
concentration are predicted to occur during the transition from subsistence to
agrarian levels of energy consumption. (Here the Roman Empire serves as the
example of an agrarian society). Counterintuitively (to me, at least), the model
predicts that further increases of energy consumption to industrial levels should
have little impact on the concentration of hierarchical power. Note also that
the model predicts a collapse of hierarchical power concentration when energy
consumption is at subsistence levels. (Given the uncertainty in the evidence
underlying the energy-hierarchy model, this result is serendipitous).

What we are ultimately interested in is the relation between inequality and
growth. In Chapter 3, we found that income scales strongly with hierarchical
power. Therefore, all other things being equal, we expect that greater concen-
trations of hierarchical power should lead to greater concentrations of income.
In general terms, then, the energy-hierarchy model predicts that the transition
from hunter-gatherer to agrarian levels of energy consumption should be asso-
ciated with a significant increase in inequality. (The size of this increase will
depend on how strongly income scales with hierarchical power). After this tran-
sition, we should expect more or less no relation between growth and inequality.

Is this prediction correct? The limited available evidence suggests that it
is on the right track. Because there are few estimates of energy consumption
for ancient societies, it is difficult to create an inequality-vs-energy plot that
would allow a direct empirical comparison to Figure 5.3. However, what we
can do is divide societies into different modes of energy capture. Figure 5.4
shows inequality estimates based on a division into four modes: hunter-gatherer,
horticultural, agrarian, and industrial. I plot these modes in the (likely) order
of increasing energy consumption. The caveat here is that the inequality data
for pre-industrial societies is measured in terms of house size [47]. This is not
strictly comparable to the income inequality data used for industrial societies.

Caveats aside, this evidence supports the basic prediction of the energy-
hierarchy model. The evidence suggests that inequality increased rapidly during
the transformation from hunter-gatherer to agrarian levels of energy consump-
tion, and was then more or less unaffected by further increases in energy con-
sumption. These results are certainly promising. They suggest that the origin
of inequality is a consequence of the increasing hierarchical organization asso-
ciated with increasing energy consumption. In big-picture terms, the energy-
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Figure 5.4: Inequality vs. Mode of Energy Capture

This figure shows how inequality relates to the mode of energy capture for four
different types of societies. Inequality data for hunter-gatherers, horticulture, and
agrarian societies comes from Kohler et al. [47] and is calculated using archaeo-
logical studies of house size. Inequality in industrial societies uses data from the
World Bank, series SI.LPOV.GINI. I define an ‘industrial’ society as having an en-
ergy consumption above the (arbitrary) threshold of 50GJ per capita. The caveat
here is that income inequality and household size inequality are not strictly comparable.

Notes: Kohler et al. conceive the house size Gini index as a metric of wealth inequality.
Perhaps we should compare Kohler’s data to modern levels of wealth inequality rather
than income inequality (in Fig. 5.4)? I think this is unwise. House size inequality is
most comparable to the inequality of equity on a principal residence. Evidence from
Edward Wolff suggests that principal residence wealth inequality is far more equally
distributed than total wealth inequality in the United States. In 2007, Wolff finds that
the top 10% of households owned 39% of principal residence wealth, but 73% of total
wealth [48]. In the same year, World Bank data (series SI.DST.10TH.10) indicates that
the top 10% held 31% of total income. This suggests that house size inequality is far
closer to income inequality than it is to wealth inequality.
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hierarchy model offers a potential way to synthesize distribution and growth. In
more narrow terms, the model unifies the cumulative results in this dissertation,
and gives an example of how they can be applied.

5.4 Conclusion

It is common to present the history of science as a progressive march towards
greater understanding. What is less discussed is the philosophical upheaval that
accompanies this process. Noam Chomsky notes that scientific progress has
consistently required lowering the philosophical bar of what constitutes ‘under-
standing’. Early scientists like Galileo believed that ‘understanding’ came only if
one could explain a natural phenomenon in mechanical terms:

The mechanical philosophy provided the very criterion for intelligibility in the
sciences. Galileo insisted that theories are intelligible, in his words, only if we
can “duplicate [their posits] by means of appropriate artificial devices.” The
same conception, which became the reigning orthodoxy, was maintained and
developed by the other leading figures of the scientific revolution: Descartes,
Leibniz, Huygens, Newton, and others. [49]

While useful for kick starting the scientific revolution, the mechanical philos-
ophy was slowly abandoned. Why? The fundamental forces (gravity, and later
electromagnetism) seemed to require ‘action at a distance’. Although necessary
for his theory of gravitation, Newton himself regarded action at a distance as
“so great an absurdity, that I believe no man who has in philosophical matters
a competent faculty of thinking, can ever fall into it” [50]. Chomsky notes that
the problem of action at a distance was not resolved by finding a mechanical
explanation, but rather by tacitly lowering philosophical goals [49,51]. Physi-
cists abandoned the original goal of a mechanistic understanding of force, and
instead became content with explaining forces in terms of the non-mechanical
concept of a ‘field’.

I believe that the social sciences have their own version of the mechanistic
philosophy — namely the philosophy of methodological individualism. Consider
Max Weber’s standard for judging ‘understanding’:

. collectivities must be treated as solely the resultants and modes of orga-
nization of the particular acts of individual persons, since these alone can be
treated as agents in a course of subjectively understandable action. [52] (em-
phasis added)

According to Weber, we do not really understand a social phenomenon unless
we can explain it in terms of the purposeful action of individuals. If the model
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of intelligibility for early scientists was “when mechanism fails, understanding
fails” [51], the model of intelligibility for Weber (and many other social scien-
tists) is ‘when purposeful, individual action fails, understanding fails’.

I suspect that both of these philosophies are artifacts of our evolved minds.
The mechanical philosophy arises because we intuitively understand the world
in terms of material objects that ‘touch’ one another. Touch is one of our five
senses, and is a key part of how we interpret world. Similarly, we intuitively
assign rational intent to the agents (animals, people, and sometimes things)
that we interact with. Daniel Dennet calls this the ‘intentional stance’, and he
believes it is something that we evolved in order to predict the behavior of other
agents. The intentional stance works as follows:

... first you decide to treat the object whose behavior is to be predicted as a
rational agent; then you figure out what beliefs that agent ought to have, given
its place in the world and its purpose. Then you figure out what desires it ought
to have, on the same considerations, and finally you predict that this rational
agent will act to further its goals in the light of its beliefs. A little practical
reasoning from the chosen set of beliefs and desires will in most instances
yield a decision about what the agent ought to do; that is what you predict the
agent will do. [53]

Just like the sensation of ‘touch’, the intentional stance is highly functional
— it gives us an intuition about how agents ought to behave. While it is cru-
cial for our everyday lives as a social species, this does not mean that assigning
rational intentionality is correct in a scientific sense. One could argue that sci-
entific advance has involved a progressive limitation of the intentional stance.
The first step was to remove intentionality from inanimate matter. For instance,
weather is now understood in terms of the laws of physics, and not in terms of
the action of a purposeful god. Next, intentionality was removed from the study
of non-human life. In modern biology, purposeful action is not a criterion for
understanding animal behavior. The social sciences appear to be the last hold
out of the intentional stance — and for good reason. It is extremely difficult for
us to consider the behavior of a fellow human without assigning rational inten-
tion. Doing so would mean questioning our own rationality — something most
people would abhor. But if we look at the course of science, it seems plausible
that a theory of human behavior will not involve intentionality.

To be sure, such a theory is a long way off (if not forever beyond our grasp).
This implies that understanding social structure in terms of the purposeful action
of individuals may be too lofty a goal. I believe that we (social scientists) should
lower our goals for judging ‘understanding’. This dissertation has attempted
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to do so by investigating social structure not in terms of individual action, but
in terms of social hierarchy. In this context, hierarchy represents an empirical
regularity in our collective behavior. Hierarchical organization is simple enough
that we can model it — and explore its implications — without an understanding
of how or why it exists. In Chomsky’s terms, this approach amounts to lowering
our philosophical goals in order to advance science.

Lofty philosophical reasons aside, there are more immediate political rea-
sons to focus on hierarchy and not individuals. Focusing on individuals makes
it extremely difficult to study social power, which is an inherently collective phe-
nomenon. This is no accident. Joseph Heath observes that methodological indi-
vidualism was appealing to early 20th century thinkers such as Hayek [54-56]
and Popper [57-59] because it negated the study of collective power:

For both Hayek and Popper, the primary motivation for respecting the precepts
of methodological individualism was to avoid “grand theory” in the style of
Auguste Comte, G.W.E Hegel and Karl Marx. Yet the motivation for avoiding
this sort of grand theory was not so much that it promoted bad theory, but that

7”7«

it promoted habits of mind, such as “collectivism,” “rationalism,” or “histori-
cism,” that were thought to be conducive to totalitarianism. Thus the sins of
“collectivism,” and “collectivist” thought patterns, for both Hayek and Popper,

were primarily political. [60]

Interestingly, the political unease with collective power was typically one-
sided and based on a fear of worker revolution (and not capitalist power). For
instance, John Bates Clark’s motivation for developing marginal productivity
theory was based explicitly on his fear that workers would take Marxist theory
seriously. Clark noted that if workers believed that they “produce an ample
amount and get only a part of it, many of them would become revolutionists,
and all would have the right to do so” [61]. This fear of worker revolution led to
a theory that actively denied the existence of power (in all its forms). This denial
is evident as a basic asymmetry in neoclassical economics: consumers are treated
as individuals but producers are treated as black-box firms (a collectivity). Why
not open up the firm and treat it as a collection of individuals? Presumably
because one cannot do so without seeing concentrated power. Abraham Zaleznik
observes:

Whatever else organizations may be (problem-solving instruments, sociotech-
nical systems, reward systems, and so on), they are political structures. This
means that organizations operate by distributing authority and setting a stage
for the exercise of power. [62] (emphasis added)
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This dissertation has sought to investigate the effects of social power by open-
ing up firms and studying their internal power structure. My central hypothe-
sis has been that firms are hierarchically organized, and that this hierarchical
organization has implications for higher-level social structure (namely income
distribution).

It is important to recognize that this type of research is in its infancy, and
thus based on less data than we might prefer. I have done my best to tease out
the implications of firm hierarchy based on a handful of case studies. More de-
tailed analysis requires more data, which requires that empirical researchers be
motivated to study hierarchy. Unfortunately this involves a Catch-22 type situa-
tion. So long as power-blind neoclassical economics is the emperor of the social
sciences, there is little academic incentive to study hierarchy. Better data thus
depends on more researchers realizing that the emperor ‘has no clothes’ [63].

We should expect that better data will lead to results that differ from those
discussed in this dissertation. This is the way that empirical science works. When
Edwin Hubble discovered the expansion of the universe, he got the rate wrong by
an order of magnitude [64]. But while wrong about the specific value, Hubble
was correct that the universe is expanding. In a similar way, the regression
coefficients and model parameters used in this dissertation are almost certainly
open to revision. However, the key trends that I have documented seem fairly
secure. These trends are as follows.

1. Social hierarchy is not constant throughout human history; rather, the
evidence suggests that hierarchy has increased over time.

2. Increases in hierarchy are accompanied by an increase in energy
consumption. This suggests that hierarchical organization has a
biophysical basis.

3. Hierarchy plays a key role in shaping income and income distribution.

Having identified these trends/facts, what are some avenues for future re-
search? The first, and most important, is replication. The hypotheses advanced
in this dissertation need to be tested using better data. To that end, I have made
all of my data and code available for researchers wishing to do replication re-
search. Second, we need to study how and why hierarchies form, and place
this hierarchy formation in a biophysical context. The work done in Chapter
2 is preliminary, and needs more investigation. Third, whenever we uncover
generalities in social behavior, the door opens for comparative work that studies
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departures from the general trend. It would be fascinating to conduct a compar-
ative study of the different ways that hierarchy relates to income distribution in
various societies (now and in the past). Lastly, we should look for ways to use
the study of hierarchy to solve practical problems.

It is on this front that I conclude. I stated at the outset that ‘economics from
the top down’ is not about prescriptive policy of any kind. I felt this was nec-
essary to differentiate my approach from so-called ‘top down’ or ‘supply side’
economics — a policy first, facts second ideology. This may have given the im-
pression that I am disinterested in policy, which I am not. Quite the opposite.
My primary motivation for conducting this research was not an innate interest
in hierarchy, but rather, a desire to find pathways to a better future. As I see it,
the great challenge facing humanity is how to chart a path to sustainability in a
way that is just and equitable.

This is a monumental task that will almost certainly involve great institu-
tional change. The research in this dissertation gives hints at what this change
should look like. If we want to reduce the scale of the economy (to lessen our
impact on the biosphere) we will need to consume less energy. This means
that we should seek smaller institutions and less hierarchy. But the paradox is
this: unless the reduction of hierarchy is enormous, the evidence suggests that
there is no guarantee that a future low-energy society will be more equitable. If
greater equality is a goal (and I think it should be), we need to do one of two
things: either we learn how to organize without hierarchy (a tall order), or we
learn how to put checks on hierarchical power so that it does not lead to vast
concentrations of income.
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Appendix A

Appendices for Energy and Institution Size

Supplementary materials for this paper are available at PLOS ONE, where the
published version resides:

https://doi.org/10.1371/journal.pone.0171823.s002
The supplementary materials include:

1. Data for all figures appearing in the paper;
2. Raw source data;
3. R code for all analysis and modeling;

Acronyms

BEA US Bureau of Economic Analysis

BLS US Bureau of Labor Statistics

EIA US Energy Information Agency

HSUS Historical Statistics of the United States
ILO International Labour Organization

GEM Global Entrepreneurship Monitor

WBES World Bank Enterprise Survey


https://doi.org/10.1371/journal.pone.0171823.s002

Sources and Methodology 167

A.1 Sources and Methodology

Electricity Use per Capita

US electricity use is from HSUS table Db228 (1920 - 1948) spliced to EIA table
7.1, Electricity End Use, Total (1949-2015). US population is from Maddison [1]
(1920-2009) and World Bank series SPPOPTOTL (2010-2015).

Energy Use per Capita — International

International energy use per capita data is from the World Bank (series EG.USE.
PCAPKG.OE).

Energy Use per Capita — United States

US total energy consumption is from HSUS, Tables Db164-171 (1890-1948) and
EIA Table 1.3 (1949-2012). US population is from Maddison [1] (1890-2009)
and World Bank series SPPORTOTL (2010-2012).

Energy Use per Capita — US Industry

US Industry energy use is from EIA Table 2.1 (Energy Consumption by Sector).
Industry employment is from BEA Table 6.8B-D (Persons Engaged in Production
by Industry), where ‘Industry’ is defined to include Mining, Manufacturing and
Construction.

Energy Use per Capita — US Manufacturing Subsectors

US manufacturing sub-sector energy use is from EIA Manufacturing Energy Con-
sumption Survey Table 1.1 (First Use of Energy for All Purposes) 2002, 2006,
and 2010. Manufacturing subsector employment is from Statistics of U.S. Busi-
nesses (US 6 digit NAICS) for 2002, 2006, and 2010.

Firm Age Composition

The fraction of firms under 42 months old (3.5 years) is calculated from the
GEM dataset aggregated over the years 2001-2011 (data series babybuso). This
series gives true/false values for whether or not a given firm is under 42 months
old. Uncertainty in this data is estimated using the bootstrap method [2].
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Firm Age Model

In order to model firm age accurately, I use a time step interval of 0.5 years (this
allows us to calculate firms under 3.5 years so that we can compare to GEM
data). However, most empirical data on firm growth rates are reported with a
time interval of 1 year. In order to facilitate comparison with empirical data, I
convert model growth rate parameters (4 and o) into the equivalent parameters
for a time step of 1 year. Code for this conversion process is provided in the
supplementary material.

Firm size — International

International mean firm size data is estimated using the Global Entrepreneurship
Monitor (GEM) database, series omnowjob. Data is aggregated over the years
2000-2011. In order to account for the over-representation of large firms, I
remove firms with more than 1000 employees from the database (see Appendix
A.2 for a discussion).

This ‘truncation’ amounts to removing the top 0.2% of firms in the GEM

database. The effects of this truncation on GEM country samples are shown in
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Figure A.1: The Effects of Truncating the GEM Database < 1000

This figure plots the country-level distribution of the percentage of firms re-
moved by truncation (firms <1000). The x-axis shows the percentage of firms
within each GEM country sample that are removed by truncation. The y-axis
shows the number of countries with the given percentage range.
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Figure A.1. For 35 out of 89 counties, this has no effect, since these country sam-
ples do not contain firms larger than 1000 employees. The median percentage
of firms removed (by country sample) is 0.01%. For a small number of countries,
this truncation removes more than 1% of firms.

Firms with zero employees are assigned a size of 1. This is an attempt to deal
with the ambiguity associated with incorporation. The owner of an incorporated
sole-proprietorship is usually treated as an employee (by most statistical agen-
cies), but the owner of an unincorporated sole-proprietorship is not. Both types
of firms have a single member.

To compare the resulting firm size observations with other time-based series,
I use the average year of each country’s aggregated data.

Uncertainty in mean firm size is estimated using the bootstrap method [2].
This involves resampling (numerous times, with replacement) the data for each
country and calculating the mean of each resample. Confidence intervals are
then calculated using the resampled mean distribution.

For comparison between firm size and energy consumption, Yemen and Trinidad
are removed as outliers.

Firm size — United States

Average firm size data for 1977-2013 is calculated by dividing the number of
persons engaged in production (BEA Table 6.8B-D) by the number of firms. The
latter is calculated as the sum of all employer firms in US Census Business Dy-
namics Statistics plus the number of unincorporated self-employed individuals
(BLS series LNU02032192 + LNU02032185).

Average firm size data for 1890-1976 uses firm counts from HSUS Ch408
(which excludes agriculture) and total private, non-farm employment from HSUS
Ba471-473 (total employment less farm and government employment). To con-
struct a continuous time-series, the two data sets are spliced together at US
Census levels for 1977.

Firm size — US Industry

Mean firm size is calculated using data from Statistics of U.S. Businesses, US 6
digit NAICS and 4 digit SIC between 1992 and 2013. ‘Industry’ is defined to
include Mining, Construction and Manufacturing.
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Firm size — US Manufacturing Sub-sectors

Mean firm size is calculated using data from Statistics of U.S. Businesses, US 6
digit NAICS 2002, 2006, and 2010.

Government Employment Share - International

International government employment data is from ILO LABORSTA database
(total public sector employment: level of government = Total, sex code = A,
sub-classification = 06). Total employment in each country uses World Bank
series SL.TLETOTL.IN.

Government Employment Share — United States

US government employment data is from HSUS Ba473 (1890-1928), Ba1002
(1929-40), and BEA 6.8A-D persons engaged in production (1940-2011). Total
US employment is from HSUS Ba471 (1900-1928), Ba988 (1929-1940), and
BEA tables 6.8A-D (1941-2011).

Large Firm Employment Share - International

The measurement of the large firm employment share is inspired by the work
of Nitzan and Bichler [4]. Global data is from Compustat Global Fundamen-
tals (series EMP). Total employment in each country uses World Bank series
SL.TLETOTL.IN. In some countries, the Compustat data exhibits sharp disconti-
nuities. In order to remove these discontinuities, I have removed the following
data: Thailand (1999, 2008, 2010, 2011), Phillipines (2003), Croatia (2011,
2012), and Oman (2010).

Large Firm Employment Share — United States

Data for the largest firms in the United States (ranked by employment) is from
Compustat North America, series DATA29 (Figure 2 uses the top 200 firms, while
Figure 3 uses the top 25). Total US employment is from BEA tables 6.8A-D
(Persons Engaged in Production).

Large Firm Employment Share — US Industry

The employment of the largest 25 firms in US Industry is calculated using the
Compustat database, series DATA29. ‘Industry’ is defined to include Mining,
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Figure A.2: Large Firms in Manufacturing Subsectors — Analyzing Bias
Caused by Variations in the Number of Firms

The top panel plots the employment share of ‘large firms’ versus the number of firms
that are defined as ‘large’ (= 5000 employees). Each data point represents a single
manufacturing subsector. The bottom panel shows the distribution of the number of
‘large firms’ per subsector.

Construction, and Manufacturing (all SIC codes between 1000 and 3999). Total
Industry employment is from BEA tables 6.8A-D (Persons Engaged in Produc-
tion).

Large Firm Employment — US Manufacturing Subsectors

Large firm employment share is calculated using data from Statistics of U.S.
Businesses, US 6 digit NAICS 2010. ‘Large firms’ are defined here as those with
5000 or more employees. This differs from other data in Figure 2.3 of the main
paper, where the 25 largest firms are used. Figure A.2 analyzes the bias in this
method. As expected, the number of firms with 5000 or more employees varies
significantly by manufacturing subsector. However the median value is 26 firms,
meaning that this method should yield similar results to the ‘top 25" method
used elsewhere. There is also no significant correlation between the number of
firms with 5000 or more employees, and the sectoral employment share of these
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firms. Therefore, the variability in the sample size of ‘large firms’ does not cause
a directional bias to the employment share of ‘large firms’.

Management Employment Share

Management fraction = management employment / total employment. Inter-
national management employment is from the ILO LABORSTA database using
ISCO-88 (Legislators, senior officials and managers) and ISCO-1968 (Adminis-
trative and managerial workers). Total employment is from World Bank series
SL.TLETOTL.IN. For ISCO-88, Argentina is removed as an outlier. For ISCO-
1968, Syria is removed as an outlier.

US management employment is from BLS Occupational Employment Statis-
tics (various tables, 1999-2014), ILO LABORSTA ISCO-88 (1970-1998) and HSUS
Bal037 (1860-1970). All series are spliced to BLS data. Total US employment
is from HSUS Ba1033 (1860-1890), HSUS Ba471 (1900-1928), Ba988 (1929-
1940), and BEA tables 6.8A-D (1941-2011). All series are spliced to BEA data.

Power Plants — Construction Labor Time vs. Capacity

Data is compiled by the author from numerous sources. Data and sources are
provided in spreadsheet form in the Supplementary Material.

Power Plants — US Plant Mean Capacity

Plant nameplate capacity data comes from EIA 860 forms from 1990 to 2015.
Mean plant capacity counts only power plants that are operational in the given
year. Note that form 860 reports generator capacity. To calculate plant capacity,
I aggregate all generators with the same Plant Code.

Self-Employment — International

International self-employment data is from the World Bank, series SL.EMPSELEZS.

Self-Employment — United States

US self-employment data is from HSUS Ba910 (1900-1928), Ba988 (1929-1940)
and BEA tables 6.7A-D (1941-2011). Total US employment is from HSUS Ba471
(1900-1928), Ba988 (1929-1940), and BEA tables 6.8A-D (1941-2011).
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Self-Employment — US Industry

Industry self-employment data is from BEA tables 6.7A-D. Industry total em-
ployment is from BEA tables 6.8A-D (Persons Engaged in Production). Industry
is defined to include Mining, Construction, and Manufacturing.

Small Firms — US Manufacturing Subsectors

Small firms are defined as those with 0-4 employees. Data is from Statistics of
U.S. Businesses, US 6 digit NAICS 2002, 2006, and 2010.

Span of Control

The span of control is calculated as the employment ratio between adjacent hi-
erarchical levels. Data sources are listed in Table A.1.

Technological Scale

Data for technological scale increases (shown in Table 2.1 of the main paper)
is compiled by the author. Sources are available in spreadsheet form in the
Supplementary Material.
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Source
Ariga
Audas
Baker
Bell
Dohmen
Eriksson
Heyman
Lima
Morais
Mueller
Rajan

Treble

Ref
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Table A.1: Span of Control Data Sources

Years

1981-1989
1992

1969-1988
2001-2010
1987-1996
1992-1995
1991,1995
1991-1995
2007-2010
2004-2013
1986-1998
1989-1994

Type

A
C
C
A
C
A
A
C
C
A
A
C

N
unknown
1
1
552

210

560

880
~300

Country

Japan

Britain

United States
United Kingdom
Netherlands
Denmark
Sweden
Portugal
Undisclosed
United Kingdom
United States

Britain

Firm Levels
All

All
Management
Top 3

All
Management
Management
All

All

All

Top 2

All

Notation: Ref = Reference, N = number of firms A = Aggregate Study, C = Case

Study

Notes: The ‘Firm Levels’ column indicates the coverage of the study. ‘All’ indicates that

the study covered all hierarchical levels with the firm(s). ‘Management’ indicates that

only managers were studied. ‘Top 2’ and ‘Top 3’ indicate that only the top 2 or 3 hier-

archical levels were studied. Raw data from Baker (the BGH dataset) is available for
download at http://faculty.chicagobooth.edu/michael.gibbs/.

In many cases, the above papers report results in a table of values, which were then

used in this paper. However, some papers report their results only in graphical form. In

these cases, I used the Engauge Digitizer program to extract data from the graphics.
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A.2 Assessing Size Bias within Firm Databases

Like all scientific inquiry, the study of firm size distribution requires reliable data.
Unfortunately, accurate firm-size data (with reasonable international coverage)
is difficult to find. There are two primary data avenues available: government
statistics (the macro level) and firm-level databases (the micro level). Each av-
enue has drawbacks.

The problem with relying on macro-level data is that it intrinsically limits the
number of countries that can be studied. Apart from wealthy (OECD) nations,
reliable macro statistics on firm size distribution are hard to find. This dearth of
data often leads researchers to use micro-level databases instead.

The problem with using these micro-level databases to study firm size dis-
tribution is that they are rarely (if ever) designed to be accurate samples of the
wider firm ‘population’. As the analysis in this section demonstrates, firm-level
databases typically under-represent small firms and over-represent large-firms.
Thus, when using a micro database to study the firm size distribution, one must
ask: is the database an accurate sample of the firm population? The question
that immediately follows is: how do we know if the database is (or is not) bi-
ased?

In order to assess database bias, one must inevitably make comparisons to
macro-level data. The key is to find macro data that is both relevant and available
(the second criteria being the more difficult to fulfill). In the following sections I
present and apply two methods for assessing firm-size bias within micro datasets.

Methods for Determining Firm-Size Bias within a Database

Method 1: Compare macro and micro-level average firm-
sizes.

Method 2: Compare micro-level small-firm employment share
to macro-level self-employment rates.

Method 1 is straightforward: it involves calculating the average firm-size
within a micro database and comparing it to the average firm-size calculated
from macro data. This approach is limited by the availability of macro data. For
OECD countries, it is possible to directly compare firm-size averages between
micro and macro data. I conduct such an analysis in Table A.2 (visualized in
Figure A.6). Unfortunately, for most non-OECD countries, this approach is not
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Figure A.3: Firm Size Distributions in Selected Micro Databases

Histograms show the firm size distribution within each database (firm size = number
of employees). Note that data is log-transformed. Black curves show the best log-
normal fit. Panel A shows the firm size distribution of the entire World Bank Enterprise
Survery database (for all years). Panel B shows the firm size distribution within the
Compustat database (Compustat North America merged with Compustat Global — all
available years). Panel C shows the firm size distribution of the Global Entrepreneurship
Monitor (GEM) database (from 2000-2011). Note that the log-normal distribution fits
both World Bank and Compustat data fairly well, but fits the GEM data very poorly.
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feasible because relevant macro-level data does not exist (hence our need for
micro data in the first place).

Method 2 is more indirect (and is dependent on some assumptions); how-
ever, its advantage is that self-employment data is readily available for most
countries. The basic logic of method 2 is as follows:

1. Self-employed individuals work in small firms.

2. We can think of the self-employment rate as an indicator of the share of
employment held by the smallest firms.

3. By comparing the self-employment rate to the small-firm employment share
within a particular database, we can infer the degree of database bias.

As a starting point, I believe method 2 is more useful, since relevant data is
more widely available. In Section A.2 I apply method 2 to three databases: Com-
pustat, the World Bank Enterprise Survey (WBES), and the Global Entrepreneur-
ship Monitor (GEM). Figure A.3 shows the firm size distribution within these
three databases. The distributions are log-transformed in order to show the log-
normal character of two of the three databases (Compustat and WBES).

While all three databases are global in scope, their respective firm size dis-
tributions are quite different (note the disparities in mean firm-size). Which
database gives the most accurate picture of the underlying population of firms?
Analysis reveals that the GEM database is the most consistent with available
macro data. Based on these results, in Section A.2 I then conduct a more de-
tailed analysis of the GEM database (see Fig. A.6).

Small Firm Employment Share as a Database Bias Test

The basic methodology of this test is to use macro-level self-employment rates
as an indicator of the share of employment held by small firms. By comparing
this rate to the small-firm employment share within a micro database, we can
assess the level of bias.

To begin, we define the small firm employment share as the share of employ-
ment held by firms with x or fewer employees (where x is an arbitrary number).
We then vary x and see if we can match the resulting small-firm employment
share with empirical self-employment rates. Figure A.4 conducts such an analy-
sis on the Compustat, GEM, and WBES databases by comparing their respective
small firm employment shares to the global self-employment rate.

First, we note that the small firm employment share in all three databases
matches global self-employment rates only for a choice of x that is too large to be
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Figure A.4: Small Firm Employment Share in Selected Micro Databases

This figure assesses the relative bias within the World Bank Enterprise Survey (WBES),
Compustat, and Global Entrepreneurship Monitor (GEM) databases. The share of em-
ployment held by firms with x or fewer employees (in each database) is compared to
the global self-employment rate between 1990 and 2013 (the dotted line is the me-
dian, while the shaded region shows the interquartile range). Sources: Global self-
employment data is for self-employed workers who are non-employers. This is calculated
by subtracting employer rates (series SL.EMPMPYR.ZS) from total self-employment rates
(series SL.EMPSELEZS).

believably related to ‘self-employment’. For WBES, the small firm employment
share is similar to the global self-employment rate when x is of order 100. For the
GEM and Compustat databases this does not happen until x is of order 10000.
This suggests that all three databases have a significant bias towards the under-
representation of small firms.

Which database has the least bias? To decide this, we must settle on a believ-
able range for the size of self-employer firms. In the real-world, the boundary x,
separating self-employer from employer, does not exist. However, we can make
an educated guess at the likely size range of self-employer firms.

Although a firm size of 1 typically comes to mind when we think of self-
employment, the statistical definition of ‘self-employment’ (as defined by the
World Bank) is quite broad. It consists of the following sub-categories:*
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1. Own-account workers
2. Members of producers’ cooperatives
3. Contributing family workers

The inclusion of contributing family workers is important, especially in de-
veloping countries where household production is still common. In this context,
the size of a self-employer ‘firm’ will be similar to the size of a family. Since
very few families are larger than 10, a believable range for which the small firm
employment share should relate to self-employment rates is for 1 < x < 10.

Over this range, the GEM small firm employment share is by far the closest
to the actual rate of self-employment. While the WBES claims to be a “represen-
tative sample of an economy’s private sector”, this analysis suggests otherwise.
The WBES small firm employment share is 2-4 orders of magnitude off the global
self-employment rate for 1 < x < 10. The Compustat database produces even
worse results (off by 4-5 orders of magnitude), but this is expected. Compustat
maintains records only for public corporations, giving it an inherent bias towards
larger firms.

Note that the WBES and GEM small firm employment shares cross at a firm
size of roughly 50. Why? The WBES contains very few small firms (size 1-10)
and too many medium size firms (size 10-50). The GEM database, on the other
hand, contains many small firms, but seems to contain too many large firms (size
> 1000). This causes the crossing behaviour observed in Figure A.4.

This analysis indicates that the GEM database is the most consistent with
observed global levels of self-employment. However, it still seems to contain
some size bias. The problem, as I discuss in the next section, is that the GEM
database contains too many extremely large firms.

Assessing Firm-Size Bias Within the GEM Database

While sufficient to weed out extremely biased databases, the method used in
Figure A.4 ignores the internal distribution of data within each database. In gen-
eral, micro databases with global coverage do not contain equal sized samples
for each country. Thus, a large, biased sample from one country could poten-
tially skew the entire database, even if other samples are relatively unbiased. To
further test database bias, it is important to group data at the national level. In
this section I investigate national-level bias within the GEM database.

!World Bank self-employment data also contains a fourth category called ‘Employers’. This
category is more aptly called ‘owners’. Since firms of all size have owners, I have adjusted the
self-employment rate by subtracting the ‘Employer’ rate.
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Figure A.5: Assessing Small-Firm Bias in the GEM Database

Notes: This figure compares the employment share of small firms (< 5 members) in
the GEM database to the distribution of self-employment rates (non-employer firms
only) within the WDI dataset. Only countries for which data is mutually available are
shown (72 countries in total). Unlike Figure A.4 all data is aggregated at the national
level (countries with small/large sample sizes are all weighted equally). Panel A shows
how country-level data is distributed within each database. The ‘violin’ shows the
distribution of data. The internal box plot shows the interquartile range (the 25th to
75th percentile), with the median marked as a horizontal line. Corresponding mean
values are shown above. Panel B shows a scatter-plot of country-level data (each point
is a country) for the self-employment rate vs. the small-firm employment share in the
truncated GEM database. The line shows the best-fit power regression. Note that the
regression exponent, a, is nearly 1. Thus, the relation between self-employment rates
and small-firm employment share is roughly one-to-one. A similar regression for the
non-truncated GEM database (not shown) gives R? = 0.48 and a = 0.54, far from a
one-to-one relation. This discrepancy between the full and truncated GEM dataset is
the result of the over-representation of large firms within a handful of countries. This
skews the small firm employment share downwards (note the low median for the full
GEM database in Panel A). Thus, the truncated GEM database is more consistent with
self-employment data, meaning we can infer that it has less of a firm-size bias.

Sources: Non-employer rates are calculated by subtracting employer rates (series
SL.EMPMPYR.ZS) from the total self-employment rate (series SL.EMBSELEZS). WDI
data is chosen for which the data year most closely matches the GEM year (which is
calculated as the country-level mean year of all data entries from 2000-2011).
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Table A.2: Mean Firm-Size in the GEM Dataset vs. Macro Data

Country Macro GEM Trunc GEM Full
Austria 7.6 11.7 12
Belgium 5.6 6.3 6
Czech Republic 3.5 13.5 30
Denmark 9.2 8.5 26
Finland 6.8 5.3 13
France 7.5 5.3 22
Germany 10.4 11.9 151
Hungary 5.7 6.1 8
Ttaly 3.5 2.8 17
Netherlands 6.1 10 27
Poland 4.7 2.9 16
Portugal 3.6 8.9 9
Russian Federation 18 9 16
Slovakia 4.2 11.8 17
Slovenia 4.9 13 19
Spain 5.5 4.5 10
Sweden 5.8 5.7 15
Switzerland 10.8 6.5 180
Turkey 3 9.5 18
United Kingdom 7.7 7 26
United States of America 9.1 10 164
India 2.6 5.2 6
Ghana 1.5 2.2 2
Mean 6.4 7.7 35.2

Notes: This table compares mean firm sizes within the GEM database to macro-level data.
Data is shown for both the full GEM database, and its truncated version, which removes all
observations of firms with more than 1000 employees. The rational for truncation is that large
firms are over-represented within the dataset, skewing mean firm-size.

Sources and Methodology: Macro-level mean firm-size is calculated by dividing total employ-
ment by the number of firms. The number of firms N,,,,; is calculated using Eq. (A.1), where
Ny, is government data for the number of firms, S; is the self-employment rate, Sy the self-
employed employer rate, U is the fraction of self-employed firms that are unincorporated (hence

not counted in official statistics), and L is the size of the labor-force.

NtotalzNgov+(ST_SE)'U'L (A1)

Data for S;, S; and L come from World Development Indicators (WDI) series SL.LEMPSELEZS,
SL.EMPMPYR.ZS, and SL.TLETOTL.IN, respectively. Data for the official number of firms comes
from OECD Entrepreneurship at a Glance 2013. Due to lack of data, U is assumed to be 0.7,
the level observed in the US [17]. For Ghana, all data comes from Sandefur [18], Table 1 and
2. For India, all data comes from Hasan and Jandoc [19], Table 1 and Table 3 (using the sum of
the ASI and NSSO datasets). For US data sources, see Appendix A.1.
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Figure A.6: GEM Mean firm size distribution vs. Macro Data

Notes: This figure visualizes the mean firm-size data for the countries shown in Table
A.2. Panel A shows the mean firm-size distribution within each database. Relative
to macro data, the full GEM database clearly over-represents large firms. The mean
firm-size in the truncated GEM database is also slightly larger than the macro data,
but given the small sample size, the difference is statistically insignificant (p = 0.20).
Panel B shows the correlation between macro data and the truncated GEM data. A
power regression gives an exponent a = 0.47, below the desired one-to-one level that
would indicate perfect agreement between the micro and macro data. Despite these
shortcomings, the truncated GEM database appears to be a fairly accurate sample of the
international firm-size distribution.

I begin with a continuation of the self-employment/small-firm method de-
veloped above. However, I now group all data at the national level. The GEM
database contains firm samples from a total of 89 countries, 72 of which also
have data available in the WDI database. For each country, the employment-
share of firms with 5 or fewer employees is calculated (from GEM data) and
compared to the WDI self-employed rate (non-employers only). This calcula-
tion is done for both the full GEM dataset, and a truncated version in which all
firms with more than 1000 employees are excluded. This truncated version is
tested on the hunch that the full GEM database still over-represents large firms
(a hunch that is confirmed in Fig. A.6).

The results of this analysis are shown in Figure A.5. Both the full and trun-
cated GEM databases have a small-firm employment-share distribution that is
roughly equivalent to the WDI self-employment rate distribution. Of particular
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interest is the fact that the small-firm employment share within the truncated
GEM database gives a nearly one-to-one prediction of WDI self-employment
rates (see Fig A.5A).

This analysis suggests that both the full and truncated GEM databases give a
reasonably accurate sample of the international firm size distribution. In order to
differentiate between the two, it is helpful to compare mean firm-size estimates
with macro data. Due to macro data constraints, this must be done with a much
smaller sample size than the 72 countries used above. Table A.2 shows the 23
countries for which data is available.

Note that macro-level mean-size estimates are predicated on a few assump-
tions. Government published statistics usually include firm-counts for employer
firms only (i.e. firms with employees). Non-employer firms are excluded. Thus,
unincorporated self-employed individuals are typically not counted as ‘firms’ (in-
corporated self-employed workers are technically counted as employees of their
business, and are thus employer firms). As a result, calculations done using offi-
cial firm-counts only will give a mean firm-size that is disproportionately large.
To account for this bias in macro data, I adjust the official firm-count by adding
an estimate for the number of self-employer firms (see the methodology in Table
A.2).

The results of this investigation are visualized in Figure A.6. From this anal-
ysis, there is convincing evidence that the full GEM database over-represents
large firms. For a few countries (Germany, Switzerland, and the US) this leads
to a mean firm-size estimate that is a factor of 10 larger than macro estimates.
Truncating the GEM database seems to effectively adjust for this bias.

Why is truncation effective (and is it justified)? The problem of firm-size
bias is partially due to the extremely skewed nature of the firm size distribution.
The presence of even a single extremely large firm can have a large effect on the
mean of a sample. For instance, the GEM database contains roughly 170,000
observations. Suppose that the mean firm-size of these observations is 5. If
we add a single observation of a Walmart-sized firm (2 million employees), the
resulting average more than triples (to roughly 17). Of course, firms this large
do exist, but the chance of observing one in a sample should be extremely small.

The fact that large firms are over-represented in the GEM database demon-
strates a sampling bias. Discarding observations of very large firms is one method
for dealing with this bias. Other methods are certainly possible, but I do not dis-
cuss them here.
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Functional Form of the Firm Size Distribution

One of the first tasks for understanding an empirical distribution (of any kind) is
to look for theoretical distributions that can be used to model it. Many observers
have used the log-normal distribution to model firm size distributions [20-25].
As shown in Figure A.3, the log-normal distribution is a suitable model for the
firm size distribution within the Compustat and WBES databases. However, the
preceding analysis showed that these databases are rather poor representations
of the actual global firm size distribution.

It may be that the use of the log-normal distribution is an artefact of re-
searchers’ reliance on biased micro databases [26]. For data that is more rep-
resentative of the actual firm size distribution (i.e. the GEM dataset), a power
law distribution is a much better fit. The characteristic feature of the log-normal
distribution is that its logarithm is normally distributed (hence the reason for the
log transformation in Fig. A.3). A power law distribution, however, will not not
appear normally distributed under a log transformation. Instead, it will decline
monotonically as the GEM database does.

Unlike Compustat and WBES, the GEM database is much better fitted with a
power law than with a log-normal distribution (see Fig. A.7A). For firms under
10,000 employees, the GEM database is consistent with a power law with a
scaling exponent a ~ 1.9. Note that the tail of the GEM database is ‘fatter’
than expect for a power law (it is above the 99% confidence interval). This is
consistent with our earlier conclusion that the GEM database over-represents
large firms. Macro data from for the US firm size distribution is also consistent
with a power law (Fig. A.7B).
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Figure A.7: GEM and US Census Data are Consistent with Power Laws

Notes: Panel A shows the firm size distribution of the Global Entrepreneurship Monitor
database (all years). For firms with less than 10,000 employees, the database is
consistent with a discrete power-law distribution with exponent a ~ 1.9. Panel B shows
the US firm size distribution, which is consistent with a discrete power-law distribution
with exponent a ~ 2. Shaded regions show the 99% confidence interval for a simulated
power law distribution with a sample size similar to each dataset.

Sources and Methodology: US data for employer firms is from the US Census Bureau,
Statistics of U.S. Businesses (using data for 2013). This data is augmented with
Bureau of Labor Statistics data for unincorporated self-employed workers (series
LNU02032185 and LNU02032192). The histogram preserves Census firm-size bins,
with self-employed data added to the first bin. The last point on the histogram consists
of all firms with more than 10,000 employees. Both power-law distributions are
simulated using the R poweRlaw package, and plotted with the same histogram bins
used to plot empirical data. The GEM simulation uses 170,000 observations while the
US simulation use 10 million observations.

Note: many readers will expect power law distributions to appear linear when plotted
on a log-log scale. Departures from linearity shown in Panel B are artefacts of US census
bin sizes (which do not always grow proportionately).

A.3 The Firm Size Distribution as a Variable Power Law

Recent studies have found that firm size distributions in the United States [26]
and other G7 countries [27] can be modelled accurately with a power law. Less
is known about other countries. In this section, I test if country-level firm size
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distributions in the GEM database are consistent with a power law. I find that
a power law distribution is favored over other heavy-tail distributions in the
vast majority of countries. I also find that international variations in 3 summary
statistics (mean, self-employment, and large firm employment share ) are mostly
consistent with a power law distribution.

Power Laws in the GEM Database

The firm size distribution in the entire GEM database is roughly consistent with
a power law, although the end of the tail is slightly too heavy (Fig. A.7A). In this
section, I analyse the GEM firm size distribution at the country level to assess how
well the data fit a power law distribution. I use the truncated GEM database,
which contains only firms with fewer than 1000 employees. The rational is that
the full GEM database slightly over-represents large firms (see Appendix A.2).

Historically, power law distributions have been fitted by using an ordinary
least-squares (OLS) regression on the logarithm of the histogram. However, this
approach is inaccurate, and it violates the assumptions that justify the use of
OLS [28]. A more appropriate approach for fitting distributions is to use the
maximum likelihood method. The likelihood function £ assesses the probability
that a set of data x came from a probability density function with the parame-
ter(s) 6.

2(6)x) = P(x|6) (A.2)

The best fit parameter(s) 0
fitting method, the maximum likelihood indicates only the best fit parameters of

e Maximizes the likelihood function. Like any
the specified model, not the appropriateness of the model itself. To discriminate
between two different models (1 and 2), we compare their respective maximum
likelihoods in ratio form (A). The larger likelihood indicates the better fitting
model.

_ zl(emlelx)

= —— A.3
PACHES (A-3)

A1,2

It is often more convenient to use the log-likelihood ratio, log A . The sign
of log A indicates the preferred model (positive indicates that model 1 is better,
negative indicates that model 2 is better). The magnitude of log A indicates the
strength of this preference.

I use this method to assess if country-level firm size distributions in the
GEM database are best modelled with a power law. I compare the likelihood
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Figure A.8: Comparing the Power Law to Alternatives in the GEM Database

Using country-level firm size distributions from the GEM database, this figure assesses
the goodness of fit of a power law relative to four other heavy-tail distributions. The firm
size distribution in each country in the GEM database is fitted with a power law, gamma,
log-logistic, log-normal, and Weibull distribution. For each country, the log-likelihood
ratio is computed between the power law and the four alternative distributions. The box
plots display the resulting range of ratios. A positive ratio indicates that the power law is
more probable, while a negative ratio indicates that the alternative distribution is more
probable. In order to better display the majority of data, several large outliers favoring a
power law are not shown. For all but 3 countries, a power law distribution is the best fit.

Notes: This figure shows the mean log-likelihood ratios for 100 re-samples (with re-
placement) of each country. Maximum likelihoods are calculated using the R packages
‘poweRlaw’ (for a power law) and ‘fitdistrplus’ (for alternative distributions). Although
empirical data is discrete, all models used here are continuous.
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of a power law distribution to the likelihood of four other heavy-tail distribu-
tions: gamma, log-logistic, log-normal, and Weibull. The resulting range of
log-likelihood ratios (one for each country in the GEM database) is shown in
Figure A.8. A power law distribution is favored over other distributions in the
vast majority of countries (97%).

International Summary Statistics

Firm size summary statistics can be used as another way to test if the firm size
distribution is consistent with a power law. This has the advantage of broadening
the evidence to include more data sources (I combine GEM, World Bank, and
Compustat data). My method is to pair two statistics and test if the resulting
empirical relation can be reproduced by simulated samples from a power law
distribution. I look at two pairings: (1) the self-employment rate vs. mean firm
size; (2) the large firm employment share vs. mean firm size.

Self-Employment vs. Mean Firm Size

The rational for looking at the self-employment rate is that it indicates the rela-
tive share of employment held by small firms. Figure A.9A shows the empirical
relation between self-employment rates and mean firm size (black dots). The
simulated relation is shown in the background, where the power law exponent
a is indicated by color. Creating this simulation requires making assumptions
about the size of self-employer firms. I assume that all firms below the size
boundary L, are considered self-employer firms. The simulated self-employment
rate then consists of the fraction of employment held by firms with employment
less than or equal to L.

To account for international variation in the size of self-employer firms, I
let the boundary point vary randomly over the range 1 < L, < 10. In Figure
A.9A, L, = 1 corresponds to the bottom of the coloured region, and L, = 10 to
the top. Why choose the upper bound to be so large? My reasoning is based
on the definition of ‘self-employment’, which consists of 3 sub-categories: own-
account workers, cooperatives, and family workers.? Especially in developing
countries, where household production is still common, a self-employer ‘firm’ is
synonymous with a family. A size of 10 seems a reasonable upper limit on the
size of family. Given this assumption, a majority of countries (75%), as well as
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Figure A.9: International Summary Statistics, Empirical vs. Power Law

This figure compares pairings of summary statistics for empirical and simulated data.
Empirical data is at the country level. Simulated data is randomly generated from a
power law distribution (the exponent a is indicated by color). Panel A shows self-
employment rates vs mean firm size while panel B shows large firm employment share
vs. mean firm size. Self-employment rates are modelled as the employment share of
all firms less than the size L,, which varies randomly over the range 1 < L, < 10. Un-
certainty in mean firm size (95% level confidence intervals) is indicated by horizontal
lines. Empirical data is judged to be consistent with a power law when the error bar is
within the 99% range of simulated data. For data sources, see Appendix A.1.

the entire time series for the United States, have a self-employment vs. mean
firm size relation that is consistent with a power law.

Large Firm Employment Share vs. Mean Firm Size

To test if variations in the large firm employment share are consistent with a
power law distribution, I use the same method as above: I plot the employment
share of the 100 largest firms against mean firm size (Fig A.9C). I then compare
this relation to the one predicted by simulated power law data. To allow for the

2Most statistical databases add a fourth category of ‘employers’ (i.e. capitalists). Because this
category is not related to small firms, I remove it from analysis.
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effects of differing country size, simulation sample sizes vary over the range of
national firm populations (which are estimated by dividing the labor force by
the mean firm size).

A slight majority of countries (56%), as well as the entire time-series for the
United States, have a large firm employment share vs. mean firm size relation
that is consistent with a power law distribution. Note that all data points that
are not consistent with a power law lie below the simulation zone (rather than
above). This could indicate that these countries have firm size distributions with
a tail that is thinner than a power law, but it could also indicate a problem with
the data. I have assumed that the 100 largest firms in the Compustat database
are actually the largest firms in each nation. There is no guarantee that this
assumption is true: the Compustat database may not give complete coverage
of the largest firms, especially if a country has many large private companies.
Further research is needed to determine if these findings indicate a departure
from a power law distribution, or if they are artefacts of incomplete data.
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A.4 Testing Gibrat’s Law Using the Compustat Database

Gibrat’s law’ states that firm growth rates are independent of firm size. To what
extent is this supported by empirical evidence? I investigate here using the
Compustat US database. My results are consistent with previous analysis of
the Compustat database: growth rates are approximately Laplace distributed,
and volatility declines with firm size [29]. However, I show that this decline is
of importance to only a small subset of firms.

Analysis

Rather than directly calculate the mean and variance of Compustat firm growth
rates, I fit the growth rate distribution with a truncated Laplace density function
(growth rates less than -100% are rounded to -100%). I then investigate how
the parameters of this function change with firm size (Fig. A.10). The advantage
of this approach is that it is not biased by large outliers, and it allows a direct
comparison of empirical data to modelled data (where firm growth rates are
drawn from a Laplace distribution).

To estimate the Laplace parameters, I fit the histogram of simulated data to
the histogram of empirical data (using a Monte Carlo technique that minimizes
the absolute value of the error). The results are displayed in Figure A.10C-D.
The location parameter (u) shows no significant relation to firm size. However,
growth rate volatility (the scale parameter, b) declines monotonically with firm
size.

Interestingly, the location parameter is always less than zero, meaning the
most probable rate of growth is negative. This finding is consistent with the
conditions predicted by a stochastic model with a reflective lower bound. Such a
model will be stable only when there is a net negative drift to firm size (Appendix
A.5). In Appendix A.6 I reproduce the US firm size distribution using a model
with a location parameter of -1%, which is consistent with Compustat data.

Extrapolating to the Entire Economy

Because the Compustat database contains data only for publicly traded firms,
it is not an accurate sample of the wider US firm population (see Appendix
A.2). However, based on the assumption that the US firm size distribution is
a power law, we can estimate how the volatility-percentile relation shown in
Figure A.10D might look for the economy as a whole. The method for this pro-
cess is shown in Table A.3.
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Figure A.10: Firm Growth Rate Distribution in the Compustat US Database

This figure analyses firm growth rates (by employment) within the Compustat US
database from 1970 to 2013. Panel A shows the growth rate distribution for firms in
the 10th (top) decile, while Panel B shows the distribution for firms in the 2nd decile.
Dotted lines indicate the best-fit Laplace distribution. Panel C and D show the results of
Laplace regressions at the percentile level. Panel C shows the estimated location param-
eter (u), while Panel D shows the estimated scale parameter (b). Laplace distributions
are fitted using a Monte Carlo method. This analysis indicates that growth rate volatility
is a function of firm size, while the growth rate mode is not. Given the firm-size bias
of the Compustat database, results for lower percentiles (i.e. P1-P10) should be treated

with scepticism.
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The first step is to generate a US firm sample from a power law distribution
that best fits empirical data (I use a = 2.01 here), and then compute size per-
centiles. Next, we select a particular percentile (the green cell) and note the
corresponding firm size in the Compustat database (left pink cell). We than find
all firms within the power-law sample that have the same size (right pink cells).
The scale parameter for the selected Compustat percentile (left purple cell) is
then mapped onto these firms, and their corresponding percentiles. The result
(right purple cells) is a transformed relation between firm percentile and scale
parameter that serves as our economy-wide estimate.

The results of this transformation are shown in Figure A.11. Two different
estimates are shown. The blue curve shows results using the raw data shown in
Figure A.10D, while the red dotted curve shows results using a linear regression
for P10-100, extrapolated over all percentiles.

Why two different methods? The bias in the Compustat increases as firm size
decreases: coverage for large firms is nearly complete, while coverage of small
firms (under 10) is extremely limited. Thus, it is quite possible that the large
increase in volatility for firm percentiles 1-10 may be an artefact of this bias.
By using the linear regression of P10-P100, we remove this potential artefact.
We can think of the two curves in Figure A.11 as representing a plausible range
for the US economy. The stochastic model used to reproduce the US firm size
distribution (Fig. A.12), has a location parameter of 34%, which is much nearer
the lower bound of our Compustat estimates.

This analysis suggest that declines in growth rate volatility are important
only to a small minority of firms.
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Figure A.11: Scale Parameter vs. Percentile, Economy-Wide Estimates

This figure shows a transformation of the Compustat scale-percentile regressions (Fig.
A.10D) to a form that is consistent with the firm size distribution of the entire US econ-
omy. The US distribution is modelled with a power law (a¢ = 2.01). The blue curve
shows the relation that would result from using the entire range of the Compustat re-
gressions (P1-100). The step-wise pattern is a result of discrete data (steps correspond
to a change in firm size by 1). The red dotted curve shows the relation resulting from

using a linear regression of Compustat P10-100 (red line in Fig. A.10D), extrapolated
over P1-10.
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Table A.3: Method for Transforming Compustat Scale Parameter Regres-
sions

Percentile Compustat Firm Size Scale Power Law Firm Size Transformed Scale

1 1 60 1 60
2 3 50 1 60
3 - - 1 60
4 - - 1 60
5 - - 1 60
6 - - 2 50

This table demonstrates the method for transforming the Compustat scale-percentile
relation to an estimated relation for the whole economy. The first step is to select a
percentile (the green cell P1 is selected here). We then match the Compustat firm size
of this percentile to the equivalent power law firm size (pink cells). The Compustat
scale parameter is then mapped onto all power law percentiles with matching firm sizes,
resulting in a transformed scale function (purple cells).

A.5 Instability of the Gibrat Model

The Gibrat model assumes that firm growth is a stochastic, multiplicative pro-
cess. If L is the initial firm size and x; the annual growth rate, then firm size at
time t is given by:

L(t)ZLO‘Xl'Xz'...'Xt == Lol_[.xl (A-4)

The instability of this model was first noted by Kalecki [30]. It stems from the
model’s diffusive nature: the resulting firm size distribution tends to spread with
time. This tendency can be understood by relating the model to the classic ex-
ample of diffusion: the one-dimensional random walk.

In a random walk model, a particle is subjected to a series of random additive
shocks (y;) that cause its position to change over time. At any given time, the
particle’s displacement from the initial position d(t) is simply the sum of all of
these shocks:

t
dO)=y+y+ety = D (A.5)
i=1

In order to intuitively understand how this leads to diffusion, let us suppose that
the shocks y; are drawn from the uniform distribution {—1,1}. At any given
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time, we can ask: what is the maximum possible displacement? In this case,
it is exactly equal to t (the number of time intervals that have passed). When
we introduce many randomly moving particles, some may attain this maximum
displacement (however unlikely it is). Since the maximum grows with time, we
can conclude that the displacement distribution must spread with time.*

The Gibrat model shares this property, except that the diffusion is exponen-
tial. To see this, we take the logarithm of Eq. A.4, which allows us to express
the growth rate product as a sum.

log(L(t)) =1log(L,) + log(x;) +log(x,) + ... +log(x,)

t
(A.6)
= log(L,) + ) ,log(x,)
i=1
We then exponentiate to get:
L(t) = LoeZi=i 1080 (A7)

By setting log(x;) = y;, we can see that Eq. A.7 is just Eq. A.5 in exponential
form: our firm growth model is a one-dimensional, exponential random walk.
The resulting firm size distribution will therefore spread rapidly with time — a
fact that is inconsistent with available evidence. For instance, we know that the
US firm size distribution has changed little since 1970 (see Fig. 2.2 in main
article).

The second problem with this model is that it gives rise to a log-normal dis-
tribution, contradicting our finding that most firm size distributions are best
described by a power law. The proof that this model leads to a log-normal dis-
tribution is straightforward. For a sufficiently large number of iterations, the
Central Limit Theorem dictates that the sum of independent, random numbers
will be normally distributed. Thus, for a large number of random walkers, the
displacement d(t) will be normally distributed (so long as the distribution of y;
satisfies certain conditions). Because Eq. A.7 is the exponential form of Eq. A.5,
the logarithm of L(t) will be normally distributed — the defining feature of the
log-normal distribution.

3For a step size drawn from the uniform distribution {—1, 1}, the standard deviation of the
displacement is equal to +/t. For a good derivation, see Feynman [31] Ch. 6.
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Adding a Reflective Lower Bound

One simple way to reform this model is to add a reflective lower bound that stops
firms from shrinking below a certain size [32-34]). This slight change will cause
the model to generate a power law, rather than a log-normal distribution. It also
leads to model stability (under certain conditions).

Why does the introduction of a reflective boundary lead to a power law dis-
tribution? One way of understanding this is to relate back to the additive ran-
dom walk. If a reflective barrier is added to a one-dimensional random walk, it
will no longer tend towards normal distribution; rather, it will tend towards an
exponential distribution (see [35], p 15 for a proof).

Recall that a multiplicative process can be transformed into an additive pro-
cess by taking the logarithm. Therefore, for a multiplicative firm model with a
lower bound, the logarithm of firm size (L) will be exponentially distributed.
Thus, the firm size distribution p(L) is given by Eq. A.8, which reduces to a
power law (where C is the normalizing constant, and « is the scale parameter).

—_ —a-log(L
p(L) = Cemeios®) A8)
=CL™
For a firm size distribution, the obvious choice for a minimum lower bound
is L = 1 (a sole-proprietor with no employees). In the proceeding model, I
implement this reflection through the following conditional statement, which is
evaluated at every time interval:

if L(t)<1, then L(t)=1 (A.9)

Introducing a reflective lower bound also solves the instability problem, but
only when growth rates have a negative ‘drift’. Why? Intuitively, we can state
that a model will be stable if it is not possible for a firm to shrink or grow forever.
Introducing a lower bound automatically stops firms from shrinking forever, but
it does nothing to stop the possibility of unending growth.

However, if firm growth rates have a net downward drift, all firms will tend
towards a size of 0, given enough time. This downward drift occurs when the
geometric mean of the growth rate distribution is less than 1. We can draw an
analogy with gas particles moving in a gravitational field on earth. The particles
move randomly, but there must be a small net downward drift due to the force
of gravity. The result is a stable distribution of particles. If we remove gravity,
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the particles are free to diffuse forever. Similarly, if we remove the downward
bias to firm growth rates, the distribution becomes unstable.
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A.6 Properties of Stochastic Models

Despite their simplicity, stochastic models of firm growth are able to replicate
many important properties of the real world. I review three such properties
here. Stochastic models can be used to:

1. Generate a firm size distribution that is consistent with empirical data;
2. Reproduce the relation between firm size and firm age;
3. Simulate new firm survival rates over time.

Modelling the US Firm Size Distribution

The model used here assumes scale-free growth with a reflective lower bound
at a firm size of one. Growth rates are drawn from a Laplace distribution that
is truncated by rounding all (fractional form) growth rates less than O to 0. In
order to maintain a discrete distribution, firms with non-integer size are rounded
to the nearest integer (after the application of each growth rate).

This simple model can be used to replicate the US firm size distribution (Fig.
A.12). In this case, model parameters u = 0.99 and b = 0.34 are used. The
model shows the distribution of 1 million firms after 100 time iterations. In order
to capture fluctuations around the equilibrium, the model is run 100 times, with
the shaded region showing the resulting range of outcomes.

Firm Age vs. Firm Size

Firm age is calculated as the time since a firm’s last ‘reflection’. The model de-
scribed above can be used to replicate the size-age relation of firms in the World
Bank Enterprise Survey (WBES) database (Fig. A.13A). The fitted parameters
are u = 0.97, b= 0.55. Note that the model diverges from WBES data for firms
with fewer than 10 employees. Due to the size bias within the WBES database
(see Appendix A.2), it is not clear if this divergence is significant, or an artefact
of database bias.

Firm Survival Rates

The survival rate of new firms tends to decline exponentially over time (Fig.
A.13B). To replicate this behavior, we give our stochastic model an initial firm
size distribution and then track firm survival over time. A firm ‘dies’ when it is
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Figure A.12: A Stochastic Model of US Firm Size Distribution

The US firm size distribution is shown for the year 2013 (blue line), along with a
stochastic model (red) of 1 million firms with growth rates drawn from a truncated
Laplace distribution with parameters u = 0.99, b = 0.34. The shaded region indicates
the 90% confidence region of the model. US Data for employer firms is from the US
Census Bureau, Statistics of U.S. Businesses (using data for 2013). This data is aug-
mented with Bureau of Labor Statistics data for unincorporated self-employed workers
(series LNU02032185 and LNU02032192). The histogram preserves Census firm-size
bins, with self-employed data added to the first bin. The last point on the histogram con-
sists of all firms with more than 10,000 employees. The model histogram uses Census
bins to allow direct comparison.

reflected for the first time. At any given time, the firm survival rate is given by
the fraction of firms that have never been reflected.

In order to model firm survival rates, we must choose an initial distribution of
firms. We can make guesses about this distribution based on BLS establishment
data. In 1994 — the first year the BLS tracked survival rates — the average
size of new establishments was 7.3. In the same year, the average size of all US
establishments was 16.9 (using data from Census Business Dynamics Statistics.
It seems reasonable to assume that the average size of new firms might also be
about half the average for all firms. It also seems reasonable to assume that
the distribution of new firms can be modelled with a power law. Using these
assumptions, I model the initial firm size distribution with a power law of a =
2.1. This gives a mean size of close to 5 (about half the US average).

The empirical data shown in Figure A.13 comes from the US Bureau of Labor
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A. Firm Age vs. Size B. Firm Survival Rates Over Time
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Figure A.13: Stochastic Models Can Reproduce Firm Age/Survival Data

Panel A shows the relation between firm size and firm age within the World Bank Enter-
prise Survey (WBES) database (blue). A stochastic model (red) with growth rates drawn
from a truncated Laplace distribution with parameters u = 0.97, b = 0.55 produces a
similar firm size-age relation. Lines indicate medians and shaded regions indicate the
interquartile range. Logarithmic bin locations are indicated with points. Panel B shows
the survival rates of new firms over a period of 21 years. Empirical data (blue) is from
the BLS Business Employment Dynamics database, Table 7, Survival of private sector
establishments by opening year. The model (red) draws growth rates from a truncated
Laplace distribution with parameters u = 0.99, b =0.35.

Statistics (BLS). A caveat is that this data is for establishment (not firm) survival
rates. An establishment refers to a specific business location, while a firm is a
legal entity that may contain multiple establishments. For modelling purposes,
I ignore this distinction here and assume that establishments are equivalent to

firms.

Empirical and modelled survival rates are shown in Figure A.13B). The sur-
vival rate model parameters (u = 0.99, b = 0.35) are nearly identical to the
parameters (u = 0.99, b = 0.34) used to replicate the US firm size distribution
(Fig. A.12). These parameters are also consistent with the range estimated from
Compustat data (Appendix A.4).
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A.7 Bias and Error in the GDP Labor Time Method

My method for estimating power plant construction time is to take total cost
and divide by (nominal) GDP per capita in the country and year of construction
(henceforth called ‘the GDP method’). In this section, I estimate the bias in this
method. To do so, we need to investigate in detail the assumptions made by this
approach.

The total cost of construction (C) of a power plant can be attributed to direct
labor costs (L), profits and interest (denoted as K, for capitalist income), and
non-labor costs (N):

C=L;+K;+N (A.10)

By the rules of double-entry accounting, all non-labor costs will eventual be-
come the income of other firms. Thus, after a long digression, we can eventually
attribute non-labor costs to either indirect labor costs (L;) or indirect capitalist
costs (K;):

C=Ly+L,+K;+K, (A.11)

Since we are not interested in differentiating between direct and indirect
costs, we define L as the sum of direct and indirect labor costs, and K as the
sum of direct and indirect capitalist costs:

C=L+K (A.12)

Next, we define w as the average wage of all of the workers who are directly
and indirectly involved in the construction project. Total labor cost (L) is then
the average wage times total labor time (t). Substituting L = w- t into Eq. A.12
gives:

C=w-t+K (A.13)

Solving for total labor time gives:

t=—— (A.14)

Equation A.14 gives an accurate estimate of the total labor time involved in
construction. Unfortunately, it is difficult (if not impossible) to calculate K (di-
rect and indirect capitalist expenses) and w (the average wage of all direct and



Bias and Error in the GDP Labor Time Method 203

indirect workers). In order to get around this lack of data, I make the assump-
tion that capitalist income can be neglected — that labor costs are approximately
the same as total costs:

L=C—-K=~C (A.15)

Furthermore, I assume that w is approximately the same as nominal GDP per
capita (V).

wrY, (A.16)

pc

Under these assumptions, Eq. A.14 is approximated by Eq. A.17:

C
t~ — (A.17)
Yy,

By using GDP per capita as a measure of average income, we implicitly as-
sume that all aspects of power plant construction occur within one country. For
older plants, this is likely a good assumption. However, in the modern era of
globalized production, this assumption is most likely violated to some degree,
especially for key components of the plants like the generators and turbines.
Unfortunately there is simply no way to disaggregate construction/manufacture
costs to their various regions. However, we can correct for this bias to some
degree by including power plants from as many nations as possible. The GDP
method will then overestimate the labor time for plants constructed in develop-
ing countries (where GDP per capita is very low) and underestimate labor time
for plants constructed in wealthy countries (where GDP per capita is very high).
The hope is that these divergent biases will cancel themselves out.

How accurate is the GDP method? Unfortunately, we cannot compare GDP
method estimates to the true labor time value (Eq. A.14) because this latter
formula contains unknowable quantities (K and w). However, we can test Eq.
A.14 against an alternative estimate for labor time that makes more accurate
assumptions.

To proceed, let us first rewrite Eq. A.14 as follows by factoring out C in the

(-1

t=—"—"7""— (A.18)
w

numerator:

We then make the assumption that capitalists involved (indirectly and directly)
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with the project earn profit and interest at approximately the national average
rate. This means we assume that the capitalist share of total costs (K/C) is
approximately the same as the capitalist share of national income (k).

K
— =~k

Y s (A.19)

We also assume that workers involved (indirectly and directly) with the project
earn the national average wage (w,). Given these assumptions, Eq. A.18 can be
rewritten as:

L CO—k)
~ w

(A.20)

n

We now have two way of estimating the labor time involved in the construc-
tion of a power plant (Eq. A.17 and Eq. A.20). Our expectation is that Eq.
A.20 is the more accurate estimate. To quantify the discrepancy between the
two estimates, we construct an error ratio, which is the ratio of the two labor
time estimates (Eq. A.17 / Eq. A.20):

WH

error ratio = 7 a—k) (A.21)

Figure A.14 shows this error ratio calculated using US data from 1929-2015.
The results indicate that the GDP method (Eq. A.17) overestimates labor time by
roughly 60%. Why? By neglecting capitalist income, our estimate inflates the
numerator in Eq. A.14. Furthermore, GDP per capita is typically slightly lower
than the average annual wage of a full-time worker, so the GDP method deflates
the denominator in Eq. A.14. Of course, this error estimate is itself based on the
assumptions contained in Eq. A.20. Still, it seems safe to conclude the following:

1. The GDP method likely overestimates the true labor time of power
plant construction;

2. This overestimate is relatively stable over time.

Since our interest in this study is how labor time scales with plant capacity
(and not with absolute labor time), this constant overestimate is of little concern.
It will have no effect on the scaling of construction labor time with power plant
size.

What is of more concern, however, are the changes in the error ratio that oc-
cur over time. How might this affect the estimation of power plant construction
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Figure A.14: Error estimate of the GDP method for calculating labor time

This figure shows calculations of the error ratio (Eq. A.21) using US data. All data is
from the BEA. National income data is from Table 1.12, National Income by Type of
Income. Capitalist share of national income is equal to profits (with CCA and IVA) and
net interest divided by national income. The average wage is calculated by dividing
the sum of the compensation of employees and proprietor income by the total persons
engaged in production (Table 6.6B-D). US population data is from Maddison [1] and
the World Bank series SPPOPTOTL. Nominal GDP data is from the file gdplev.

time? It is actually quite simple to model the effect of measurement error on
a scaling relation. We begin by assuming that two variables, x and y, exhibit
perfect power law scaling identical to that found between power plant capacity
and construction labor time:

y = x12° (A.22)
To study the effect of measurement error, we introduce a ‘noise factor’ e (drawn
from a lognormal distribution), that perturbs the perfect scaling relation:

y=x%.¢ (A.23)

The effect of larger/smaller error can be modelled by increasing/decreasing
the relative dispersion of €. Suppose, for argument’s sake, that Figure A.14
severely underestimates the error associated with the GDP method. In reality, let
us assume that the error is 10 times larger. Since the relative standard deviation
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of the Figure A.14 error ratio is 0.086, we can model the effect of a tenfold
increase in error by setting € to have a relative standard deviation of 0.86.

Figure A.15 shows how the effects of this error factor (on our power law scal-
ing relation) change as the orders of magnitude spanned by the dependent vari-
able (x) increase. The horizontal axis shows the orders of magnitude spanned
by the variable x, while the vertical axis shows the R* value of a log-log regres-

sion on the relation y = x!%¢

- €. The important result is that even though the
measurement error is quite large, it becomes increasingly inconsequential as the

data span increases.

Why? The R? value indicates the proportion of the variance in the dependent
variable (y) that is predictable from the independent variable (x). Since we
are conducting a log-log regression, it is helpful to look at the log transformed
relation:

log(y) = 1.26 -log(x) + log(€) (A.24)

Now, the variance in log(y) is affected both by the variance in log(x) and by
the variance in log(e). But notice that the variance in both log(y) and log(x)
will be proportional to the logarithm of the range of x. But this is equivalent
to the orders of magnitude spanned by x (since orders of magnitude indicate
scaling by factors of 10). Thus, the variance in log(x) and log(y) scales with the
orders of magnitude spanned by x. However the variance in log(e) is constant
— it does not change as the range of x increases. Because the variance in log(e)
does not scale, its importance decreases as the range of x increases. That is, the
fraction of variance in log(y) that is attributable to log(e) is inversely related to
the orders of magnitude spanned by x.

So what does this result imply for the accuracy of the GDP method? Clearly,
accuracy is a function of the orders or magnitude spanned by plant capacity. In
our case study, plant capacity spanned seven orders of magnitude. According to
Figure A.15, even if the GDP method had a severe error factor (i.e. only accurate
to within a factor of 3), the resulting measurement error would still not have a
significant effect on the observed scaling relation. Thus, despite the error that
is implicit in the GDP method, it is likely that our results are robust.

Still, given that the GDP method has a bias, why not use the more accurate
approach given in Eq. A.20? The problem with this formula is that it requires
data on the capitalist share of national income as well as data on the average
annual income of full time workers. This data is much more difficult to obtain
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Figure A.15: Data span vs. the effect of measurement error on a scaling

relation

This figure shows multiple log-log regressions on data defined by the relation y = x126.

€. Here x is a random variable whose logarithm is uniformly distributed, and € is a noise
factor drawn from a lognormal distribution with mean 1 and standard deviation 0.86
(which is 10 times the relative standard deviation of the error ratio in Fig A.14). The
horizontal axis shows the orders of magnitude spanned by the variable x, while the
vertical axis shows the resulting R? value of the y vs. x regression. Each dot represents
a single regression. Inset plots (red) show raw data underlying two different regressions
— one with a small data span (bottom left) and one with a large data span (top right).
For data that spans less than 2 orders of magnitude, the noise dominates the subsequent
regression. However, once the span of x surpasses 4 orders of magnitude, the noise
becomes inconsequential to the regression.
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than GDP per capita (especially in developing countries). Thus my use of the
GDP method is mostly one of convenience: it makes analysis easier.
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A.8 A Hierarchical Model of the Firm

An ‘ideal’ hierarchy has a constant span of control throughout — meaning the
employment ratio between each consecutive hierarchical level is constant (Fig.
A.16). This property allows total employment to be expressed as a geometric
series of the span of control s. If the number of individuals in the top hierarchical
level is a, and h, is the total number of hierarchical levels, then total employment
L is given by the following series:

L =a(1 +s +52+...+sht_1) (A.25)

Using the formula for the sum of a geometric series, Eq. A.25 can be rewritten
as:

1—sh
1—s

L=a

(A.26)

We make the assumption that individuals in and above the hierarchical level
h,, are considered managers. The number of managers M in a firm with h, levels
of hierarchy is equivalent to the employment of a firm with h, —h,, + 1 levels of
hierarchy:

1— sht—hm+1
M=a——— (A.27)
1—s
We can use Eq. A.27 and Eq. A.26 to express management as a fraction of total
employment (M /L):

=— (A.28)

M 1 _Sht_hm+1
i 1—sh

Asymptotic Behavior of the Management Fraction

The management fraction tends to grow with the number of hierarchical levels,
but only to a certain point (Fig. A.17). For h, > 10 the management fraction ap-
proaches an asymptotic limit that depends only on the span of control s. Finding
the asymptotic behavior of M /L requires evaluating the following limit:

M 1_ hi—h,+1
lim = = lim —— " (A.29)

h,—oo [, h,—o00 1—sh
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Figure A.16: A Perfectly Hierarchical Firm

Within a perfectly hierarchical firm, the number of individuals in adjacent hi-
erarchical levels differs by a factor of the span of control s (in this diagram,
s = 2). This characteristic allows total employment L to be expressed as a ge-
ometric series of s. Managers (red) are defined as all individuals in and above
level h,, (which equals 3 here).
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Figure A.17: Asymptotic Behavior of the Management Fraction

This figure shows a plot of Eq. A.28 for h,, = 3 and various s. As the total
number of hierarchical levels (h,) increases, the management fraction (M /L)
within a firm grows rapidly, but soon reaches an asymptotic limit. This asymp-
tote is a function of the span of control s, and the choice of h,, (the definition
of where management begins).
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f16x)
g'(x)”

To evaluate this limit, I use L'Hospital’s Rule, which states that lim % = lim

We first rewrite Eq. A.29 in a differentiable form, with a base e exponent:

1 — plo8(s) (hy—hyy 1)

. M .
h}gl;o - h}gréo 1 — elog(s)h, (A.30)

Applying L'Hospital’s Rule, we take the derivative (with respect to h,) of both
the numerator and the denominator in Eq. A.30, giving:

M _log(s) - '8 (h—hy+1)
lim — = lim g(s) (A.31)
h;—oo [, h,—o0 —]og(s) . elog(s)h;
This simplifies to:
lim M _ g hytD) ot (A32)

Therefore, the asymptotic behavior of the management fraction depends only
on the span of control, and our definition of management.

An Algorithm for Creating Hierarchies

The management model uses a power law simulated firm size distribution. In
order to calculate the number of managers, each firm must be organized into
hierarchical levels. I have developed the following algorithm to carry out this
process.

Having selected a firm, we know its employment L and its span of control
s; however, the total number of hierarchical levels h, is unknown. To calculate
h,, we assume, for the moment, that the size of the top hierarchical level is one.
Therefore, h, must satisfy:

L= (A.33)

Solving for h, gives:

_log[1+L(s—1)]
- log(s)

(A.34)

t

Since h, must be discrete, we round the solution to the nearest integer. My
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method is then to ‘build’ the hierarchy from the bottom up. If the bottom hier-
archical level contains b workers, then L is defined by the series:

1 1 1
L=b(1+—+—+...+ ) (A.35)

Using the formula for the sum of a geometric series, this becomes:

1—1/sh

L=b
1—1/s

(A.36)
At the moment, L is known but b is unknown. We therefore solve for b (and
round the answer to the nearest integer):

1—1/s
b=1L T—1/sm (A.37)
Once we have b, we can differentiate the firm into hierarchical levels by
dividing b by powers of s (Eq. A.35). Due to rounding errors, the sum of the
employment of all hierarchical levels may differ from the original firm size L.
Any discrepancies are added (or subtracted) to the base level to give the correct
firm size. The number of managers M is then simply the sum from hierarchical

level h,, to h,.
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A.9 An Agrarian Model of Institution Size

In this section, I use an adaptation of the hierarchical firm model (used in Fig.
2.7 of the main paper and discussed in Appendix A.8) to explain the institution
size limits posed by an agrarian economy. In agrarian societies, the vast majority
of the population is directly engaged in agricultural activities — a direct result
of low agricultural labor productivity. This model aims to demonstrate that the
large size of the agricultural population places inherent constraints on agrarian
institution size. The model makes the following assumptions:

1. All agrarian institutions are ‘ideal’ hierarchies with the same span of con-
trol.

2. The agricultural population forms the bottom hierarchical level of all in-
stitutions.

3. Agrarian institution sizes are distributed according to a power law.

The model is depicted graphically in Figure A.18. In formulating this model,
I have in mind a feudal society in which the institutional unit can be loosely
thought of as the feudal manor. These institutions are organized around the
extraction of an agricultural surplus from peasants/serfs, and are defined by
a rigid caste system (with serfs at the bottom). For the sake of simplicity, we
assume that all peasants/serfs are engaged in agriculture.

There is evidence that feudal manors (like modern firms) were power-law
distributed. For instance Hegyi et al. find an approximate power law distribution
of serf ownership by nobles/aristocrats in 16th century Hungary [36]. Similarly,
Kahan finds a highly skewed distribution of serf ownership in 18th century Rus-
sia [37] (although this distribution is better fit with a lognormal function).

Although the above assumptions may well be wrong (or oversimplifications),
this model is intended mostly as a thought experiment. Figure A.19A shows the
modelled relation between the agricultural portion of the total population and
mean institution size (with the span of control varying between 2 and 3). The
prediction is that the agricultural population should decline rapidly as mean
institution size increases.

In this model, the fraction of the population engaged in agriculture places
strict limitations on institution size. Estimates vary on the size of this agricul-
tural fraction of the population in historical agrarian societies. In Figure A.19, I
use Cottrell’s estimate that 95% of the population in ancient Egypt was directly
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Figure A.18: The Decline of Agricultural Workers as a Function of Institution
Size in an Agrarian Economy

This figure shows an adaptation of the hierarchical firm model presented in Appendix
A.8. In agrarian societies, we assume that the bottom hierarchical level of all institutions
is constituted entirely of agricultural workers. As institution size increases, the relative
size of the agrarian population declines. All institutions are assumed to be ‘ideal’ hier-
archies with constant spans of control. In the model (not accurately represented here)
the institution size is distributed according to a power law.

engaged in agricultural activity [38] (indicated by the red horizontal line in Fig.
A.19A). According to the model, this limits mean institution size to between 1.2
and 1.32 people (indicated by the grey region).

If we further assume that the modern relation between mean firm size and
energy use per capita is applicable to agrarian institutions, we can make pre-
dictions about rates of energy consumption. We input the estimated mean in-
stitution size range into the firm size versus energy regression from Figure 2.1C
(main paper) to predict a range of energy use per capita for this model society
(Fig. A.19B).

The predicted interval of roughly 10 to 30 GJ per capita is a surprisingly
realistic range for a typical agrarian society. For instance Warde estimates that
England used 20 GJ of energy per capita in 1560 [39]. Similarly, Malanima
estimates that 1st and 2nd century Romans consumed between 9 and 17 GJ per
capita [40].
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Figure A.19: Modelling Agricultural Constraints on Institution Size, and the
Implication for Energy Use per Capita in Agrarian Societies

This figure shows how a hierarchical model of an agrarian society can be used to relate
the size of the agricultural population to institution size and energy use per capita.
Panel A shows the modelled relation between the agricultural portion of the population
and mean institution size. Different mean institution sizes are generated by varying the
exponent of the institution size distribution. Different spans of control are indicated
by color. The red horizontal line corresponds to a society with 95% of the population
in agriculture, and the shaded region shows the corresponding prediction for mean
institution size. Panel B shows the energy use per capita predictions for this range
of institution size. These predictions are made using the national mean firm size vs.
energy use per capita regression shown in Fig. 2.1C of the main paper. The formula is
Ep = 14.3L192 where E, is energy per capita and L is mean firm size. The grey region
indicates the 95% confidence interval of the prediction.
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This model can be used to understand how energetic constraints place limits
on institution size within agrarian societies. In all societies, the relative size of
the agricultural population is a function of agricultural labor productivity [41].
The agriculture sector must produce a surplus of food in order to feed the non-
agricultural population [42]. It follows that the fraction of workers in agriculture
can decline only if their per person output of surplus food increases.

In agrarian societies, agricultural workers relied exclusively on human and
animal labor, which meant that output per worker was extremely low compared
to modern industrial agriculture. The result was that the agricultural surplus
was very small, allowing only a small non-agricultural population to exist [43].
According to our model, this leads to inherent constraint on institution size.

Agricultural productivity, in turn, is directly related to energy use. Increasing
agricultural labour productivity requires that each worker convert more energy
into useful work. Historically, this meant first introducing more draft animals per
worker, followed by the widespread adoption of fossil fuel powered equipment
(tractors, combines, etc.). As agricultural workers increase their energy use, this
will impact per capita energy use for society at large.

Unfortunately, this model cannot be used to study the transformation from
an agrarian to an industrial society because its premise breaks down as this tran-
sition proceeds. The model is based on a feudal society organized around the
expropriation of an agricultural surplus from a serf/peasant class. As feudal re-
lations give way to market relations, this social structure ceases to exist. New
institutions form that have nothing to do with agriculture, meaning assumption
2 (the bottom level of all institutions is entirely made up of agricultural workers)
becomes absurd.

Despite its shortcomings, this model is useful for understanding the possible
limitations placed on institution size by the energetic constraints of an agrarian
economy.
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Appendix B

Appendices For Evidence for a Power Theory of
Personal Income Distribution

Supplementary materials for this paper are available at the Open Science Frame-
work repository:

https://osf.io/en4rz/
The supplementary materials include:
Data for all figures appearing in the paper;

Raw source data;
R code for all analysis;

> Wb =

Compustat model code.
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B.1 Data Sources
Age

Age mean income and within-group Gini index data is from US Census Tables
PINC-02 over the years 1994-2015. Age is grouped into the following 4 cate-
gories: 18-24, 25-44, 45-64, 65 and older.

Census Blocks

Census blocks data comes from the US Census American Community Survey
(ACS) over the years 2010-2014. This data is tabulated at the household (rather
than individual) level. Neither mean household income nor household Gini in-
dex data is directly available from the ACS at the census block level. I calculate
mean household income by dividing aggregate household income by the number
of households.

Within group Gini indexes are estimated from binned income data using the
R ‘binequality’ package. I construct two different estimates: one using a para-
metric method and the other using the midpoint method. For the parametric
method, I fit either a lognormal or gamma distribution (whichever is best) to
the binned data. Gini indexes are then calculated from this fitted distribution.
The midpoint method uses midpoints of the bins to estimate the Gini index. The
midpoint of the upper bin (which has an open upper bound) is estimated from
a best-fit power law (again, implemented in the R binequality package). Both
Gini estimates are used in Figures 10 and 11 in the main paper. The R code
implementing this method is included in the Supplementary Material.

Census Tracts

Census tract data comes from the US Census American Community Survey (ACS)
over the years 2010-2015. Mean income data comes from series S1902, while
intra-tract Gini indexes come from series B19083.

Cognitive Score

The between-within indicator for cognitive score is estimated using data from
Figure 6 in Bowles et al. [ 1]. Bowles’ figure presents 65 different estimates (from
24 studies between 1963 and 1992) of the relation between individual income
and cognitive score. The strength of this relation is quantified using the beta


ftp://cran.r-project.org/pub/R/web/packages/binequality/binequality.pdf
https://osf.io/ytr3b/
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coefficients () of a log-linear regression. This coefficient represents the slope
of the regression equation shown in Eq. B.1, where the logarithm of income —
log(I) — and cognitive score (S) have first been normalized to have a mean of 0
and standard deviation of one.

log(I)=a+ S (B.1)

I use Engauge Digitizer to extract data from Bowles’ graph. I then use a model
to estimate the Gg,, metric from Bowles’ reported beta coefficients. The model
creates a stochastic log-linear scaling relation between income and cognitive
score. By adjusting the strength of this relation, we can create modeled data
that has an equivalent beta coefficient to any of the points in Bowles’ figure. I
then use the model to calculate a Gy, for this beta coefficient.

The model assumes that cognitive score (S) is a normally distributed random
variate with a mean of 100 and standard deviation of 15:

S ~ #(100,15) (B.2)

We assume that the natural log of mean income (InI) scales exponentially with
cognitive score (Eq. B.3). Since there is no evidence that extreme IQs lead to
extreme incomes (at either the bottom or top end), I do not include them in the
model. I model only those individuals with scores that are within two standard
deviations of the mean ( 70 < S < 130 ). The parameter a determines how
strongly cognitive score affects average income.

In(I)=a(S—70) for 70<S <130 (B.3)

We assume that individual income (I) is a stochastic variable that is dis-
tributed according to a lognormal distribution defined by the location parameter
u and scale parameter o:

I ~InA(u,0) (B.4)

Equation B.5 shows how mean income I is related to u and o.

1.2

[ =e't2° (B.5)
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Figure B.1: Cognitive Score Method — Estimating the Between-Within In-
dicator (Ggy) from Normalized Regression Coefficients (3)

This figure shows an example of the model for converting cognitive score regression data

from Bowles et al. [ 1] to the Gy, indicator. Using equations B.2-B.7, I create a stochastic

scaling relation between the logarithm of individual income and cognitive score. The

strength of this scaling relation is determined by the parameter a, and is quantified

by the normalized regression coefficient 3. The top left panel shows a weak scaling

relation, while the top right shows a strong scaling relation. I then group individuals

into cognitive score intervals of 5 (vertical grey bars) and calculate the Ggy, metric.
The bottom left panel shows the resulting relation between Ggy, and 3 that is used to

convert Bowles’ data.
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By taking the logarithm and solving for u, Eq. B.5 can be transformed into the
following:

u=In(I)— %02 (B.6)

We then substitute Eq. B.3 into Eq. B.6 to define u in terms of cognitive score:

U= a(S—7O)—%(72 (B.7)

The algorithm for the model is as follows. We first generate a random cog-
nitive score S, drawn from the normal distribution defined by Eq. B.2. We then
take this score and use Eq. B.7 to define the parameter u. Finally, we generate a
random income for this cognitive score, drawn from the lognormal distribution
defined by Eq. B.4. This process is then repeated as many times to generate a
stochastic dataset relating income to cognitive score.

The model has 2 free parameters: a and o. Parameter a affects the rate
at which income scales with cognitive score, while o determines the amount
of dispersion around the mean income I. The parameter o strongly affects the
level of ‘global’ inequality in the model, while a has only a slight effect. For
this reason, it is important to chose o such that the model has a realistic level
of inequality. I chose o = 0.8. Over the chosen range of —0.007 < a < 0.03,
this produces global Gini indexes that range between 0.43 and 0.47, which is
roughly consistent with US data for the second half of the 20th century.

For any given value of a, the model generates a stochastic relation between
cognitive score and income I. Two examples are shown in Figure B.1. In Figure
B.1A, the small value of a produces a very weak relation between income and
cognitive score. In Figure B.1B, the larger value of a produces a stronger relation
between income and cognitive score.

The strength of the relation is indicated by the beta coefficient 3. The pur-
pose of this model is to convert the values of 3 reported by Bowles et al. into the
between-within Gini ratio that is used in this paper. To make this conversion, we
must group individuals by their cognitive score. The bin-size of this grouping is
arbitrary; I construct groupings of 5 point cognitive score intervals (indicated by
the grey vertical bands in Fig. B.1A-B). For each group, we calculate the mean
income and within-group Gini index. The between-within Gini metric Gy, is
then calculated by the method outlined in the main paper.

I repeat this process for many different values of a, which produces the mod-
eled relation between Gg,, and 8 shown in Figure B.1C. I then fit this relation
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with a high order polynomial that serves as the function for converting Bowles’
p values into the Gy, values used in this paper.

Counties

US County data comes from the American Community survey for the years 2006-
2015. County Gini indexes are from series B19083, while mean income is from
series S1902.

Education

Mean income and within-group Gini indexes by educational level come from US
Census tables PINC-03 over the years 1994-2014. Educational level is catego-
rized into the following groups:

* Less Than 9th Grade * Bachelor’s Degree

* 9th to 12th Nongrad * Master’s Degree

* High school Graduate (Incl GED) * Professional Degree
* Some College * Doctorate Degree

Associate Degree

Employees vs. Self-Employment

To calculate mean income and intra-group Gini indexes for employees and self-
employed workers, I use US Census table PINC-07 between 1994 and 2015. This
table contains three categories: Government Wage And Salary Workers, Private
Wage And Salary Workers, and Self-Employed Workers. Table B.1 shows how I
have mapped these categories onto the ‘employees’ and ‘self-employed’ sectors.

e D

Table B.1: Grouping Categories of Census Table PINC-07

Employees | Self-Employed

e Government Wage And Salary Workers | e Self-Employed Workers
o Private Wage And Salary Workers

Self-employed mean income and within-group Gini index come directly from
PINC-07. To calculate the mean income of employees, I use the average of the
means of government workers and private workers, weighted by the size of each

group.
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Since Gini indexes are not additive, I estimate the inequality among employ-
ees from binned data. I first add the binned income counts of both government
and private wage/salary workers to get a binned income distribution for all ‘em-
ployees’. From this binned data, I then use the the R ‘binequality’ package to
estimate private sector Gini indexes.

I construct two different estimates: one using a parametric method and the
other using the midpoint method. For the parametric method, I fit various the-
oretical distributions to the binned data. Gini indexes are then calculated from
the best-fitting distribution. The midpoint method uses midpoints of the bins
to estimate the Gini index. The midpoint of the upper bin (which has an open
upper bound) is estimated from a best-fit power law (again, implemented in
the R binequality package). Both Gini estimates are used in Figures 10 and 11
of the main paper. The R code implementing this method is included in the
Supplementary Material.

Firms

Firm between-within inequality calculations use the Compustat database, and
are a combination of empirical and modeled data. Firm mean income is calcu-
lated directly from Compustat data by dividing Total Staff Expenses (series XLR)
by the number of employees (series EMP). Firm internal inequality is estimated
using the Compustat Model. See Appendix B.2-B.7 for a detailed discussion.

Full and Part Time Workers

Full and part time worker mean income and within-group inequality data comes
from US Census tables PINC-05 from 1994-2015.

Parent Income Percentile

‘Parent income percentile’ refers to grouping individuals by the income per-
centile of their parents. My calculations are done using Table 1 and 2 from the
online data tables of Chetty et al. [2] — a seminal study of US intergenerational
mobility. For every parent income percentile x, Table 1 gives the probability
p(x, y) that the corresponding child will have an income in percentile y. Table
2 gives the mean income (I ,) of each child percentile y.

My method for estimating group mean incomes and within-group inequality
is shown in equations B.8 and B.9. The first step is to convert the probability
p(x,y) into an integer w(x, y) that can be used to weight incomes. Since the


ftp://cran.r-project.org/pub/R/web/packages/binequality/binequality.pdf
https://osf.io/ytr3b/
www.equality-of-opportunity.org/data/descriptive/table1/online_data_tables.xls
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probabilities in Table 1 contain 7 decimal places, I multiply p(x, y) by 107 (Eq.
B.8).

w(x,y)=p(x,y) x 10 (B.8)

For each each income percentile x, we then create a vector of child incomes

(I,) by repeating each child percentile mean income I , by the weighting factor

L oxwlxy) . =,
w(x,y). Here the notation ------ indicates that the value I, is repeated w(x, y)

times.

= xw(x,1) - xw(x,2) - xw(x,100)
I, = ([1 ...... N PR R VS ) (B.9)

We can think of I, as an estimated income distribution for children of parents in
income percentile x. Mean income and within-group inequality of parent group
x are then estimated by calculating the mean and Gini index (respectively) of
I

-

Note that this method neglects the income dispersion within each child in-
come percentile (Chetty et al. do not provide this data). Thus, our estimated
Gini index will have a slight downward bias. The R code implementing this
method is included in the Supplementary Material.

Hierarchical Level — Heyman

This data comes from Fredrik Heyman’s [3] study of 560 Swedish firms in the
year 1995. His dataset includes only the top 4 levels of management. I include
Heyman’s results in the paper with the caveat that his data does not represent
all hierarchical levels.

Heyman (Table A.1) provides the mean and standard deviation of the loga-
rithm of incomes in each level. I estimate mean income (I) and Gini index (G)
by hierarchical level by assuming that intra-hierarchical level income is lognor-
mally distributed. Under this assumption, the mean of log income is equal to the
lognormal location parameter u, while the standard deviation of log income is
equal to the scale parameter o. Equations B.10 and B.11 then define the mean
income and Gini index (respectively) of each hierarchical level.

I =ebt20 (B.10)

G= erf(%) (B.11)


https://osf.io/ytr3b/
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Figure B.2: Aggregate Inequality Implied by Hierarchy Data

This figure compares levels of inequality implied by the Mueller et al. and Heyman firm
samples against the inequality in their respective countries. UK inequality data is over
the period 2004-2013, the same as covered by Mueller’s data. Heyman’s study covers
the year 1995, while Swedish data is from 2004-2013. UK and Sweden Gini data is from
the World Bank, series SI.POV.GINI.

Figure B.2 shows how the implied aggregate inequality within the Heyman’s
sample compares to Swedish empirical data. Heymans’s sample implies a bit less
inequality than the empirical data. This is not surprising, however, as Heyman’s
data includes only the top 4 levels of management.

Hierarchical Level — Mueller et al.

This data comes from Mueller et al. [4], who study the hierarchical pay structure
of 880 United Kingdom firms over the period 2004-2013. For each hierarchical
level, Mueller et al. provide the mean income as well as the 25th, 50th, and 75th
income percentiles. To estimate intra-level inequality, I adapt R code written by
Andrie de Vries to find the best-fit theoretical distribution for each hierarchi-
cal level. Intra-hierarchical level inequality is then calculated from the best-fit
distribution.

Figure B.2 shows how aggregate inequality within the Mueller et al. sample
compares to UK data over the same period. Although the Mueller et al. data is
slightly more unequal than the UK as a whole, it is a reasonably representative
sample.


https://www.r-bloggers.com/parameters-and-percentiles-the-gamma-distribution/
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Hierarchical Level — Compustat Model

The Compustat model is discussed extensively in Appendix B.2-B.7.

Labor and Property Income

‘Labor’ income is defined as wages and salaries, while ‘property’ income is de-
fined as the sum of interest, dividends, rents, royalties, and estates or trust in-
come. Mean income and within-group inequality data comes from US Census
tables PINC-08 from 2003-2015.

Occupation

Data for mean income and with-group inequality by occupation comes from US
Census tables PINC-06 (income by occupation of longest job) between 2007 and
2015. This table classifies occupations by major type, minor type, and detailed
type. I use detailed categories only, which amounts to between 53 to 55 different
occupation groups (depending on the year).

The US Bureau of Labor Statistics also publishes occupational wage estimates
(available at https://www.bls.gov/oes/tables.htm). For the sake of complete-
ness, I analyze this data here, but do not use it for the results published in the
paper. The BLS data differs from Census data in the ways shown in Table B.2.

Because the BLS does not report within-occupation Gini indexes directly, I
estimate them via the reported values for 10th, 25th, 50th, 75th, and 90th in-
come percentiles. Using an adaption of R code written by Andrie de Vries, I fit
a variety of theoretical distributions to this percentile data. Within-occupation
Gini indexes are calculated from the best-fit theoretical distribution.

The resulting between-within inequality indicator is shown in Figure B.3A,
alongside the results from Census occupation data. The two calculations differ
starkly. Census data indicates that between-occupation inequality is less than
within-occupation inequality; however, the BLS data indicate the reverse.

Which result is correct? The answer to this question depends on the type
of income inequality we are interested in explaining. The BLS data covers only
full-time, non-self-employed workers earning labor income. Census data, on the
other hand, includes all individuals. For the purposes of this paper, the Census
data is a better choice.

To demonstrate the differences between BLS and Census data, we can cal-
culate the aggregate inequality that is implied by the data. To do this, I make


https://www.bls.gov/oes/tables.htm
https://www.r-bloggers.com/parameters-and-percentiles-the-gamma-distribution/
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Table B.2: Contrasting the US Census and BLS Occupational Income Data

Census Data BLS Data
Includes self-employed workers Does not include self-employed workers
Income for all full and part-time work Income is for full-time equivalent workers

only (hourly wage x 2080 hours).

Includes non-labor income Does not include non-labor income
53-55 detailed occupation types 700-800 detailed occupational types
Reports Gini index directly Reports 10th, 25th, 50th, 75th and 90th in-

come percentiles

the simplifying assumption that all occupations have lognormal income distribu-
tions. Given the mean income () and within-group Gini index (G) of a particular
occupation, we can define the lognormal location (u) and scale (o) parameters:

o=2-erf Y(G) (B.12)

u=In(I)— %02 (B.13)

If the number of individuals engaged in this occupation is n, we can create
a simulated occupational income distribution by generating n values from the
lognormal distribution defined by u and o. We repeat this process for every
occupation, and then aggregate all of the simulated occupational income distri-
butions. The Gini index of this aggregated distribution is the level of inequality
that is implied by the data.

The results of this analysis are shown in Figure B.3B. As expected, the in-
equality that is implied by Census data closely matches actual levels of inequal-
ity between all individuals. However, the inequality implied by BLS data is much
lower — a clear result of the restrictions underlying the BLS methods. For the
purposes of this paper, the Census data is the correct choice.

Owner vs. Renter

Mean income and intra-group Gini indexes by home-ownership status come from
US Census table PINC-01 between 1994 and 2015. I use the following two
categories: (1) Owner Occupied; and (2) Renter Occupied.
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A. Conflicting Data

B. Empirical and Implied Inequality

Figure B.3: Inequality by Occupation — Data Discrepancies

This figure shows differences in the occupation income data published by the US Cen-
sus versus that published by the US Bureau of Labor Statistics (BLS). Panel A shows
calculations of the between-within indicator (Ggy,) for both BLS and Census data. The
BLS data gives a much higher Ggy, value, meaning between-occupation inequality is far
greater (relative to within-occupation inequality) in BLS data than it is in the Census
data. Why? The two datasets imply very different levels of aggregate (society-wide)
inequality, as shown in panel B. This is because the BLS data includes only full-time
wage/salary earners, while the Census data includes all individuals. The level of aggre-
gate inequality implied by the Census data closely matches actual levels. I use Census
data only in this paper.

Public vs. Private Sector

To calculate mean income and intra-group Gini indexes for public and private
sector workers, I use US Census table PINC-07 between 1994 and 2015. This
table contains three categories: Government Wage And Salary Workers, Private
Wage And Salary Workers, and Self-Employed Workers. Table B.3 shows how I
have mapped these categories onto the ‘public’ and ‘private’ sectors.

The mean income and Gini index of the public sector is thus equivalent to
the values for government wage/salary workers. Private sector mean income is
calculated as the average of the means of private wage/salary worker income
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Empirical
— Implied by BLS Data
| 0.61 Implied by Census Data
_____________________ 3 05}
o
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. £
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Table B.3: Grouping Categories of Census Table PINC-07

Public Sector | Private Sector

e Government Wage And Salary Workers | e Private Wage And Salary Workers
e Self-Employed Workers

and self-employed worker income, weighted by the size of each group.

Since Gini indexes are not additive, I estimate the inequality of private sector
income from binned data. I first add the binned income counts of both private
wage/salary workers and self-employed workers to get a binned income distri-
bution for the private sector. From this binned data, I then use the R ‘binequality’
package to estimate private sector Gini indexes.

I construct two different estimates: one using a parametric method and the
other using the midpoint method. For the parametric method, I fit various the-
oretical distributions to the binned data. Gini indexes are then calculated from
the best-fitting distribution. The midpoint method uses midpoints of the bins
to estimate the Gini index. The midpoint of the upper bin (which has an open
upper bound) is estimated from a best-fit power law (again, implemented in
the R binequality package). Both Gini estimates are used in Figures 10 and 11
of the main paper. The R code implementing this method is included in the
Supplementary Material.

Race

Data for mean income and within-group inequality by race comes from US Cen-
sus tables PINC-01 between 1994 and 2015. Data for 2002-2015 contain the
following four categories: Asian, Black, Hispanic, and White. Data for 1994-
2001 contains only three categories: Black, Hispanic, and White.

Religion

Religion income data comes from the Pew Research Center 2007 U.S. Religious
Landscape Survey (RLS). I use the following groups:

* Agnostic * Church of Christ, or Disciples of
* Atheist Christ
* Baptist * Congregational or United Church of

¢ Buddhist Christ


ftp://cran.r-project.org/pub/R/web/packages/binequality/binequality.pdf
https://osf.io/ytr3b/
http://www.pewforum.org/religious-landscape-study/
http://www.pewforum.org/religious-landscape-study/
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» Episcopalian or Anglican * Nondenominational or

* Hindu Independent Church

* Holiness (Nazarenes, Wesleyan * Nothing in particular
Church, Salvation Army) ¢ Orthodox

e Jewish * Pentecostal

e Lutheran * Presbyterian

¢ Methodist ¢ Reformed (include Reformed

¢ Mormon Church in America; Christian

¢ Muslim Reformed; Calvinist)

¢ Roman Catholic

The RLS reports the binned income of each respondent. I use the R ‘binequal-
ity’ package to estimate group mean income and Gini indexes (using the mid-
point method). Because some religions have a very small sample size, I use the
bootstrap method [5] to estimate a plausible range of values for group mean
incomes and intra-group income inequality.

Sex

Data for mean income and within-group inequality by sex (male/female only)
comes from US Census tables PINC-01 between 1994 and 2015.

Urban vs. Rural

Data for urban/rural mean income and intra-group Gini index comes from US
Census tables PINC-01 between 1994 and 2015. I define ‘urban’ as individu-
als inside metropolitan statistical areas, and ‘rural’ as individuals outside these
areas.


ftp://cran.r-project.org/pub/R/web/packages/binequality/binequality.pdf
ftp://cran.r-project.org/pub/R/web/packages/binequality/binequality.pdf
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B.2 Hierarchical Structure and Pay within Case-Study Firms

Purely based on worldly experience, most people would agree that firms are
hierarchically organized, and that pay tends to increase as one moves up the
hierarchy. But the exact structure of this hierarchy has not been widely studied.

Figure B.4 shows the hierarchical employment and pay structure of six dif-
ferent firms whose data has been made available to social scientists. The firms
remain anonymous, and are named after the authors of the case-study papers
(see Table B.6 for details). By and large, these studies confirm our basic intuition
about firm structure. Although the exact shapes vary, all of the firms in Figure
B.4 have a roughly pyramidal employment structure and inverse pyramid pay
structure.

To analyze the structure of these firms in further detail, I define and calculate
the three metrics shown in Table B.4. Results are shown in Figure B.5. Figure
B.5A shows how the span of control changes as a function of hierarchical level.
The data shows unambiguously that the span of control tends to increase as
one moves up the hierarchy. Figure B.5B shows how the inter-level pay ratio
changes as a function of hierarchical level. Again, this ratio tends to increase
as one moves up the hierarchy. Figure B.5C shows the intra-level Gini index
as a function of hierarchical level. Unlike the other two quantities, intra-level
income inequality seems to be more-or-less constant across all hierarchical levels
(a linear regression reveals no significant trend).

As well as single-firm case studies, a handful of studies exist that have an-
alyzed the hierarchical structure of multiple firms. Although these aggregate
studies offer more scope than case studies, they have one major shortcoming:
they rarely study the structure of entire firms. Instead, these aggregate studies
typically focus on the span of control and pay in the top hierarchical levels of a

Table B.4: Metrics of Firm Hierarchical Employment and Pay Struc-

ture
Name Definition
Span of Control Employment ratio between adjacent hierarchical levels.

Inter-Level Pay Ratio:  Ratio of mean pay between adjacent hierarchical levels.

Intra-Level Gini Index The Gini index of income inequality within a specific
hierarchical level of a firm.
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Table B.5: Stylized Facts About Firm Employment and Pay

1. The span of control tends to increase with hierarchical level.
2. The the inter-level pay ratio tends to increase with hierarchical level.

3. Intra-level income inequality is approximately constant across all hierarchi-
cal levels.

firm (the CEO and adjacent upper management levels).

This is a problem. I have conceptualized firm hierarchy as a bottom-up rank-
ing (see Fig. 3.8 in the main paper). Under this definition, a CEO in a small firm
will be in a very different hierarchical level than a CEO in a large firm. Thus,
when we compare the span of control between a CEO and his subordinates across
firms of different size, we are likely comparing very different hierarchical levels.

As a result of this shortcoming, the aggregate studies summarized in Table
B.7 are less useful than the case studies in Table B.6. However, keeping in mind
their shortcomings, these aggregate studies still reveal the same trends as our
case study data. Figure B.6 shows the analysis of these aggregate studies. Note
that hierarchical level is counted from the top down, where level 0 is the CEO.
Figure B.6A and B (respectively) indicate that there is still a tendency for the
span of control and inter-level pay ratio to increase with hierarchical level.

From this evidence, I propose the ‘stylized’ facts shown in Table B.5 about
firm employment and pay structure.
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Figure B.4: The Hierarchical Employment and Pay Structure of Six Different

Firms

This figure shows the pyramid structure of six different case study firms. Panel A shows
the hierarchical structure of employment, while panel B shows the hierarchical pay

structure.
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Figure B.5: Case Studies of Firm Hierarchical Structure

This figure shows data from 7 different single-firm case studies. Panel A shows how the
span of control (the employment ratio between adjacent levels) relates to hierarchical
level. Panel B shows how the pay ratio between adjacent levels varies with hierarchical
level. In these two panels, span of control and pay ratios between two hierarchical
levels, h and h — 1, are plotted on the x-axis at level h. Panel C shows levels of income
inequality within individual hierarchical levels of each firm. Note that horizontal ‘jitter’
has been introduced in all three plots in order to better visualize the data (hierarchical
level is a discrete variable). Grey regions correspond to the 95% confidence interval for
regressions (or in panel C, the mean).
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Figure B.6: Aggregate Studies of Firm Hierarchical Structure

This figure shows data from 9 different aggregate firm studies. Most of these studies
only survey the top several hierarchical levels in each firm. Because of this, I order
hierarchical levels from the top down, where the CEO is level 0, the level below is -1, etc.
Panel A shows how the span of control (the employment ratio between adjacent levels)
relates to hierarchical level. Panel B shows how the pay ratio between adjacent levels
varies with hierarchical level. In both plots, horizontal ‘jitter’ has been introduced in
order to better visualize the data (hierarchical level is a discrete variable). Grey regions
correspond to the 95% confidence interval for regressions.




Hierarchical Structure and Pay within Case-Study Firms 240

Table B.6: Firm Case Studies

Source Years Country Firm Levels zl())?lrtlrj Irllfzze L]e)\;::)it‘l:z)ile
(6] 1992 Britain All v v

[7] 1969-1985 United States Management v v v

[8] 1987-1996 Netherlands All v v v

[9] 1995 & 1998 US and Germany  All v v

[10]  1991-1995  Portugal All v v v

[11]*  2007-2010  Undisclosed All v v

[12]  1989-1994  Britain All v v v

Notes: This table shows metadata for the firm case studies displayed in Fig. B.5. ‘Firm Levels’ refers to the portion of the firm that
is included in the study. ‘Management’ indicates that only management levels were studied.
*For the analysis conducted in this paper I discard (as an outlier) the bottom hierarchical level in Morais and Kakabadse’s data.

Table B.7: Firm Aggregate Studies

Source Years Nun-1ber Country Firm Levels Span of Level
of Firms Control Income

[13] 1981-1989 unknown Japan All v v
[14]  2001-2010 552 United Kingdom Top 3 v v
[15] 1992-1995 210 Denmark Management v v
[3] 1991,1995 560 Sweden Management v v
[16]  1981-1985 439 United States Top 9 v
[17]  1980-1984 200 United States Top 4 v
[4] 2004-2013 880 United Kingdom ~ All v v
[18] 1986-1998 261 United States Top 2 v

[19]  1986-1998 8101 Taiwan Top 2 v

Notes: This table shows metadata for the aggregate studies displayed in Fig. B.6. ‘Firm Level’s refers to the portion of the firm
that is included in the study. ‘Top 2’, “Top 3’, etc. indicates that only the top n levels were included in the study (where the top
level is the CEO).
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Table B.8: Income Inequality Within Case Study Firms

Source Years Mean Gini Index
[7] 1969-1985 0.32
[8] 1991 0.18
[10] 1991-1995 0.15
[11] 2007-2010 0.23
[12] 1989-1997 0.26

B.2.1 Inequality Within Case Study Firms

I report here my estimates for inequality within the case study firms. Of the seven
case studies summarized in Table B.6, only one (Morais and Kakabadse) directly
reports a firm Gini index. However, four other studies — Baker et al., Dohmen
et al., Lima, and Treble et al. — provide enough data to allow estimates of firm
internal inequality. I outline my calculation methods below. The resulting Gini
estimates are shown in Table B.8.

Baker et al.

Baker et al. [ 7] have made their raw personnel data publicly available at the site
below. I use this raw data to calculate the firm internal Gini index.

http://faculty.chicagobooth.edu/michael.gibbs/research/index.html

Dohmen et al.

Dohmen et al. [8] report the following data that I use to estimate the firm Gini
index:

1. Fraction of employment by hierarchical level (Tbl. 1);
2. Density plots of income distribution by hierarchical level (Fig. 5).

I use the Engauge Digitizer program to digitize and pull data from the density
plots. I then use the resulting numerical density functions to estimate the firm
Gini index.

We define f;,(x) as the income density function for hierarchical level h. The
income density function of the entire firm f;(x) is then defined by Eq. B.14 — the


http://faculty.chicagobooth.edu/michael.gibbs/research/index.html
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sum of the density functions for each hierarchical level, weighted by the fraction
of total employment (E,/Er).

n

Ey
xX)= — - fu(x B.14
fr() =) Fhhil) (B.14)
The firm Gini index is then defined by Eq. B.15-B.17. Equation B.15 defines
the mean income of the firm (I), while equation B.16 defines the cumulative
income distribution function F(x). Equation B.17 then defines the Gini index
(G). I use numerical integration implemented in R to evaluate these integrals.

I_zf x - fr(x) dx (B.15)
0
F(x)= J fr dx (B.16)
0
G= %f F(x)(1—F(x))dx (B.17)
0

Grund

Grund [9] does not provide enough information to calculate firm-wide inequal-
ity. However, I am able to calculate intra-level income dispersion, (which ap-
pears in Fig. B.5C). I use data from Grund’s Fig. 1, which shows mean income
by level, as well as what I assume to be 5th and 95th percentiles. After digitizing
this data, I use the best-fit theoretical distribution to estimate the Gini index.

Lima

Lima [10] provides the following summary statistics, which I use to estimate a
firm Gini index:

1. Employment within each hierarchical level (Tbl. 1);
2. Mean pay within each hierarchical level (Fig. 2);
3. Wage coefficient of variation by hierarchical level (Tbl. 6).

I use the Engauge Digitizer program to digitize and pull data from Fig. 2. To
calculate the firm Gini index, I assume income within each hierarchical level is
lognormally distributed. For each hierarchical level h, I then use equation B.18
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to define the lognormal scale parameter o that produces a distribution with an
equivalent coefficient of variation, c,:

o = y/In(c2+1) (B.18)

Once we have o}, we use equation B.19 to calculate the lognormal location
parameter u for each hierarchical level . Here I, is the mean pay in hierarchical
level h (which Lima reports directly).

- 1
uy, = In(I}) — 50}21 (B.19)

Once we have the appropriate lognormal parameters for each hierarchical
level, we use these distributions to create a simulated payroll. To do this, we
draw E, numbers (employment in level h) from each lognormal distribution
In A (uy, 0,). I then calculate the Gini index from this simulated payroll.

Treble et al.

Treble et al. [12] report the following summary statistics, which I use to estimate
a firm Gini index:

1. Employment within each hierarchical level (Fig. 2);
2. Mean pay within each hierarchical level (Fig. 3);
3. 5th and 95th wage percentile by hierarchical level (Fig. 4).

Again, I use Engauge Digitizer to pull data from all graphs. To estimate the
intra-level Gini index, I adapt code writtent by Andrie de Vries to fit a parame-
terized distribution to the mean and 5th/95th percentiles.


https://www.r-bloggers.com/parameters-and-percentiles-the-gamma-distribution/
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Table B.9: Notation

Symbol Definition

span of control parameter 1

span of control parameter 2
coefficient of variation

CEO to average employee pay ratio
employment

MmO H o R

either (1) a generic function;

or (2) a probability density function
cumulative distribution function

Gini index of inequality

hierarchical level

average income

lognormal location parameter
number of hierarchical levels in a firm
pay ratio between adjacent hierarchical levels
pay-scaling parameter

span of control

lognormal scale parameter

total for firm

round down to nearest integer
product of a sequence of numbers

M e ~Qa® 3D 3T == Q=

sum of a sequence of numbers

B.3 A Hierarchical Model of the Firm

In this section, I outline the mathematics underlying my hierarchical model of
the firm. The model assumptions, outlined below, are based on the stylized facts
gleaned from the real-world firm data in section B.2.

Model Assumptions

1. Firms are hierarchically structured, with a span of control that
increases exponentially with hierarchical level.

2. The ratio of mean pay between adjacent hierarchical levels in-
creases exponentially with hierarchical level.
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3. Intra-hierarchical-level income is lognormally distribute and con-
stant across all levels.

Using these assumptions, I first develop an algorithm that describes the hi-
erarchical employment within a model firm, followed by an algorithm that de-
scribes the hierarchical pay structure.

B.3.1 Generating the Employment Hierarchy

To generate the hierarchical structure of a firm, we begin by defining the span
of control (s) as the ratio of employment (E) between two consecutive hierar-
chical levels (h), where h = 1 is the bottom hierarchical level. It simplifies later
calculations if we define the span of control in level 1 as s = 1. This leads to the
following piecewise function:

1 if h=1
s, =13 E,_ (B.20)
" i h> 2
h
Based on our empirical findings in Section B.2, we assume that the span of
control is not constant; rather it increases exponentially with hierarchical level.
I model the span of control as a function of hierarchical level (s;) with a simple

exponential function, where a and b are free parameters:

1 if h=1 B.21)
Sp= .
" a-e if h>2
As one moves up the hierarchy, employment in each consecutive level (Ej)
decreases by 1/s,. This yields Eq. B.22, a recursive method for calculating Ej.
In this model, we want employment to be whole numbers. To accomplish this I
have included the | symbol to indicate that the last step is to round down to the
nearest whole number. By repeatedly substituting Eq. B.22 into itself, we can
obtain a non-recursive formula (Eq. B.23). In product notation, Eq. B.23 can
be written as Eq. B.24.

E
E,=l =22 for h>1 (B.22)
Sh
11 1
Eh :l El ''''' st T (B.23)
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h
1
E,=lE| |- (B.24)
Total employment in the whole firm (E;) is the sum of employment in all
hierarchical levels. Defining n as the total number of hierarchical levels, we get
Eq. B.25, which in summation notation, becomes Eq. B.26.

Er=E +Ey+..+E, (B.25)
n

Er= Y E, (B.26)
h=1

In practice, n is not known beforehand, so we define it using Eq. B.24. We
progressively increase h until we reach a level of zero employment. The highest
level n will be the hierarchical level directly below the first hierarchical level with
zero employment:

n= {h | Eh >1 and Eh+1 = O} (B27)

To summarize, the hierarchical employment structure of our model firm is
determined by 3 free parameters: the span of control parameters a and b, and
base-level employment E;.

B.3.2 Generating Hierarchical Pay

To model the hierarchical pay structure of a firm, we begin by defining the inter-
hierarchical pay-ratio (p,) as the ratio of mean income (I) between adjacent
hierarchical levels. Again, it is helpful to use a piecewise function so that we
can define a pay-ratio for hierarchical level 1:

1 if h=1

_ B.28
Pr I i hso (B.28)

Ih—l

Based on our empirical findings in Section B.2, we assume that the pay ratio
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increases exponentially with hierarchical level. I model this relation with the
following function, where r is a free parameter:

(1 ifR=1 5.29)
A '

Using the same logic as with employment (shown above), the mean income
I, in any hierarchical level is defined recursively by Eq. B.30 and non-recursively
by Eq. B.31.

I {
I,=-"2 (B.30)
Dn
h
L =1, l_[pi (B.31)
i=1

Mean income for all employees (I;) is then the weighted average of hierar-
chical level mean income (I;,) and hierarchical level employment (E,):

n

_ Z E,

IT - 2 Ih . E_T (B32)
=1

We define the CEO as the person(s) in the top hierarchical level. Therefore,
CEO pay is simply I,,, average income in the top hierarchical level. The CEO-to-
average-employee pay ratio is given by the equation below. For succinctness, I
refer to this ratio as the ‘CEO pay ratio’ C:

C= (B.33)

~

’ﬂl:s'

To summarize, the hierarchical pay structure of our model firm is determined
by 2 free parameters: the pay-scaling parameter r, and mean pay in the base
level (I,)

B.3.3 Adding Intra-Level Pay Dispersion

Up to this point, we have modelled only the mean income within each hierar-
chical level of a firm. The last step in the modelling process is to make the firm
more realistic by adding pay dispersion within each hierarchical level.
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A. Adding Pay Dispersion Within Each Hierarchical Level

Hi hical
erenical HHHBEE

Level Mean Income

Income

B. Relative Contribution to Intra—Firm Income Distribution

Hierarchical
Level (h) 1 2 3 4 5

10

1 2 3 4 5 6 7 8 9
Income

Figure B.7: Adding Intra-Level Pay Dispersion to a Model Firm

This illustrates a model firm with lognormal pay dispersion in each hierarchical level.
The model firm has a pay-scaling parameter of r = 1.2 and an intra-level Gini index
of 0.13. Panel A shows the separate distributions for each level, with mean income
indicated by a dashed vertical line. Panel B shows contribution of each hierarchical level
to the resulting income distribution for the whole firm (income density functions are
summed while weighting for their respective employment. Span of control parameters
are identical to those used Table B.10.

10
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For this model, I assume that pay dispersion within hierarchical levels is log-
normally distributed. This means that income (I) in hierarchical level h is de-
scribed by the probability density function In A(I,; u, o), where u and o are the
location and scale parameters, respectively:

In N (Iy; u,0) =

PRY)
_M] (B.34)

1
———ex
I,-ov2m p[ 202

Our empirical investigation of firm case studies indicated that pay dispersion
with hierarchical levels is relatively constant (see Fig. B.5C). Given this finding,
I assume identical inequality within all hierarchical levels. This means that the
lognormal scale parameter o is the same for all hierarchical levels.

To define u, I use Eq. B.35, the formula for the mean income (I;,) of our
lognormal distribution. Solving for u gives Eq. B.36.

I, =e*39 (B.35)

uzln(I_h)—%a2 (B.36)

Given a value for o (which is a free parameter), we can define the pay distri-
bution within any hierarchical level of a firm. This process is shown graphically
in Figure B.7. Figure B.7A shows the lognormal income distributions for each
hierarchical level of a 5-level firm with pay-scaling parameter r = 1.2. Figure
B.7B shows the size-adjusted contribution of each hierarchical level to the over-
all intra-firm income distribution. Lower levels have more members, and thus
dominate the overall distribution.

Once we have defined the probability distributions governing income in each
hierarchical level, the last step is to simulate individual pay, and ultimately con-
struct a firm payroll. We do this by defining income as a random lognormal
variable:

I, ~ In A (uy,0) (B.37)

We construct a completed firm payroll by drawing E, random numbers for
each level h, and combining them all in the payroll vector I. Using subscripts
to denote the hierarchical level and superscripts to denote the individual in that
level (ranging from 1 to E;) we get:

E,

[={1},12,. . I 112, 1, 1) (B.38)
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Note that the last entry, the CEO pay I, is not a random variable. In order to
preserve the CEO pay ratio (dictated by the Compustat dataset) I do not allow
this value to vary stochastically.

B.3.4 Example of the Model Algorithm

We begin by choosing the arbitrary values of a, b, E;, r, and I, shown in Table
B.10. We then input these values into the hierarchy-building algorithm. Column
A shows the hierarchical levels of the firm (h), where h = 1 is the base level. Us-
ing parameters a and b, we first calculate the span of control (column B), which
defines the employment-ratio between adjacent hierarchical levels. In column
C, we begin with the base level and use Eq. B.22 to calculate employment in
each hierarchical level. In column D, we calculate the pay ratio p, using the
pay-scaling parameter r. Finally, in column E, we calculate mean income I, in
each hierarchical level

Once we have this table of values, we can calculate aggregate statics like
total employment (the sum of column C) and mean pay (the mean of column E,
weighted by column C). We can also calculate the CEO pay ratio. These results
are shown at the bottom of Table B.10

The last step of the model is to generate a simulated payroll by adding lognor-
mal dispersion to each hierarchical level. For large firms, this involves drawing
many random numbers from a lognormal distribution. For example purposes,
it is convenient to choose a small firm. Table B.11 shows a firm with the same
span of control parameters as in Table B.10, but with a base size of 10. As before,
we use the model algorithm to calculate mean pay in each level. We then use
Eq. B.36 to calculate the lognormal location parameter in each level. The last
step is to create the simulated payroll. For each hierarchical level h, we draw
E, random numbers from a lognormal distribution with parameters o and u;,.
Note that we do not let income in the top hierarchical level vary stochastically
— this preserves the CEO pay ratio on which the model is based.

Once we have the simulated payroll, we can calculate the firm’s income in-
equality. The resulting Gini index will vary randomly, due to the stochastic na-
ture of the model. For large firms (more than 1000 employees) this variation is
negligible. For small firms, if we wish to know the ‘true’ Gini index that is pre-
dicted from the sum of the lognormal density functions, we can do two things:

1. Run the model many times and take the mean of resulting sample of
Gini indexes;
2. Multiply all hierarchical employment E; by a large, constant factor.
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Table B.10: Example of the Model Algorithm

Parameters

a b E, r I

1 0.2 10000 1.15 1

A B C D E

Hi hical ~ Span of
e fealEEL p Employment Pay Ratio Mean Income

Level Control
h s, = €2 E, =l E:; pr=115" L, =TIy -p,
10 7.39 0 - -
9 6.05 1 3.52 468.5
8 4.95 8 3.06 133.2
7 4.06 44 2.66 43.5
6 3.32 182 2.31 16.4
5 2.72 607 2.01 7.1
4 2.23 1652 1.75 3.5
3 1.82 3678 1.52 2.0
2 1.49 6703 1.32 1.3
1 - 10000 - 1
Results
Total Employment Mean Pay CEO Pay  CEO Pay Ratio
n B n _ Eh _ _ B
ET:;Eh IT:th:Ih'E_T I, C=1,/Ir

22 875 1.87 468.5 250
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Table B.11: Adding Intra-Level Pay Dispersion to a Firm

Parameters
a b E, r I o
1 0.2 10 1.2 1 0.24

Hierarchical . .
Level Pay Ratio Mean Pay  Scale Parameter Location Paramter
eve
h pp=12" L,=I, py o up = In(I) — %02
4 1.73 2.99 0.24 1.07
3 1.44 1.73 0.24 0.52
2 1.20 1.20 0.24 0.15
1 - 1.00 0.24 -0.03
Generating a Simulated Payroll
Hierarchical .
Employment Simulated Payroll
Level
h Ey Iy ~In A (uy, 0)
4 1 {2.99}
3 3 {1.62,1.88,1.16}
2 6 {1.11,0.94,1.08,1.15,1.07,2.13}
1 10 {0.75,0.65,1.04,1.09,0.96,0.95,0.97,1.09,0.75,0.87}
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Mathematically, these two approaches produce identical results. However,
method 2 is computationally faster. In our example, the Gini of the simulated
payroll is G = 0.206. The Gini predicted from the sum of lognormal density
functions is G = 0.217.
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B.4 The Compustat Data

To model US intra-firm income distribution, I use the Compustat data series
shown in Table B.12. Selected statistics from this dataset are shown in Figure
B.8.

Employment, staff expense, and executive compensation data available are
for roughly 300 firms per year over the period 1992-2015 (Fig. B.8A). Although
this is a small firm sample, the firms themselves are very large, with mean sizes
of between 20,000 and 30,000 employees (Fig. B.8B). As a result, this firm
sample accounts for roughly 5% of US employment (Fig. B.8C). Unlike the total
US firm size distribution, which has a power-law shape [20], this Compustat
firm sample is lognormally distributed (Fig. B.8D).

From the three data series shown in Table B.12, we can calculate the follow-
ing:

Total Staff Expenses
Employee Mean Income = (B.39)
Employees

. Top Exec Pay
CEO Pay Ratio = (B.40)
Employee Mean Income

Note that ‘CEO pay’ is defined as the income of the top-paid executive in a given
firm. The CEO pay ratio of this sample is lognormally distributed (Fig. B.8E)
with an average of between 50 and 150 (Fig. B.8F). The normalized firm mean
pay distribution is shown in Figure B.8G (each firm’s pay is divided by average of
the annual sample). The resulting log distribution has bimodal structure. Figure
B.8H shows how the mean pay of the Compustat sample compares to mean pay
for all US workers. Employees in these Compustat firms earn slightly more than

Table B.12: Compustat Data Series

Database Series ID Description

ExecuComp TDC1 Executive Total Compensation
Fundamentals Annual XLR Total Staff Expenses
Fundamentals Annual EMP Employees

Notes: Executive compensation series TDC1 = Salary + Bonus + Other Annual
+ Restricted StockGrants + LTTPPayouts + All Other + Value of Option Grants
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the US population at large — a result that is consistent with the well-known firm
size-wage gap [21].

Figure B.8I shows inter-firm income inequality — the Gini index of firm mean
pay in our Compustat sample. Inter-firm income inequality in this sample tended
to increase over the time period in question.
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Figure B.8: Selected Statistics from the Compustat Firm Sample

This figure shows statistics for the Compustat firm sample, which consists of US firms

for which the data series in Table B.12 are available. In panel H, US mean income per

worker is calculated from national accounts (BEA Table 1.12, National Income by Type

of Income) by dividing the sum of employee and proprietor income by the number of

workers (BEA Table 6.8C-D, persons engaged in production).
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Table B.13: Compustat Model Parameters

Parameter | Definition Estimation Method

a, b

Values are fixed for all modeled firms.

o Intra-hierarchical level pay dispersion | Estimated from case study data (Fig. B.5C).
parameter Value is fixed for all modeled firms.
E; Employment in base hierarchical level | Estimated numerically, given a, b, and Com-
pustat firm employment E7.
r Pay-scaling parameter Estimated from Compustat CEO pay ratio,
given a, b, and E;.
I Mean pay in base hierarchical level Estimated from Compustat firm mean pay

I, givena, b, Ey, and r.

B.5 Estimating Compustat Model Parameters

We now apply the algorithm developed in Appendix B.3 to model intra-firm in-
come distribution within the Compustat firm sample (Sec. B.4). The Compustat
model is characterized by the 6 parameters shown in Table B.13. In order to
model the internal income distribution of Compustat firms, we need to estimate
these 6 parameters for each firm. My methods are summarized in Table B.13
and discussed in detail in the following sections.

B.5.1 Parameters Derived from Case-Study Data

The parameters a, b, and o are estimated from the firm case-study data shown
in Figure B.5 and assumed to be fixed for all Compustat firms. The parameters
a and b, which together determine how the span of control changes with hier-
archical level, come from an exponential regression on data in Fig. B.5A. The
parameter o determines the amount of pay dispersion within each hierarchical
level of a firm (all levels are assumed to have the same amount of dispersion).
This dispersion is modeled with a lognormal distribution, and o is the ‘scale’
parameter (see Eq. B.34).

We estimate o from the case-study data shown in B.5C. Note that this data
uses the Gini index as the metric for dispersion. To estimate o, we first calculate

Span of control parameters Estimated from case study data (Fig. B.5A).
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Figure B.9: Density Estimates for Case-Study Derived Parameters

This figure shows density estimates for the parameters a, b, and o. Parameters a and b
together determine the ‘shape’ of the firm hierarchy. The parameter o determines the
amount of income dispersion within each hierarchical level. Each parameter is deter-
mined from regressions on firm case-study data (Fig. B.5). The density functions are
estimated using a bootstrap analysis, which involves resampling (with replacement)
the case study data many times, and calculating the parameters a, b, and o for each

resample.

the mean Gini index of all data (G). We then use Eq. B.41 to calculate the value
o, which corresponds to the lognormal scale parameter that would produce a
lognormal distribution with an equivalent Gini index. This equation is derived
from the definition of the Gini index of a lognormal distribution — G = erf(c /2).

o=2-erf Y(G) (B.41)

Once a, b, and o are estimated from case-study data, the model proceeds on
the assumption that these parameters are constant across all Compustat firms.
While real-world Compustat firms likely have parameters that vary widely, the
hope is that our case-study regression provides a reasonable midpoint estimate.

Regressions on the case-study data provide a single best-fit estimate of the
values of a, b, and o. However, because the case-study sample size is small,
there is considerable uncertainty in these values. This uncertainty can be quan-
tified using the bootstrap method [5], which involves repeatedly resampling the
data (with replacement) and then estimating the parameters a, b, and o from
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Figure B.10: Finding Base Level Employment From Total Employment

This figure shows the modeled relation between total employment in a firm (E;) and
base-level employment (E;). This relation, defined by Eq. B.21, B.24, and B.26, depends
on the span of control parameters a and b (here a = 1.05 and b = 0.13). I fit this
numerical mapping with a high-order polynomial to allow fast (but accurate) estimation
of E; from E. The R code for this procedure is available in the Supplementary Material.

this resampled data. Figure B.9 shows the probability density distributions re-
sulting from this bootstrap analysis.

To incorporate this uncertainty into the model, I run the model many times
— once for each bootstrapped estimate of a, b, and o. In each iteration, we first
resample the case-study data and calculate values of a, b, and o. We then use
these values (particularly a and b) to calculate all other model parameters. The
results shown in this paper are based on 5000 bootstrap runs of the model.

B.5.2 Base Level Employment

Having estimated the span of control parameters a and b, the next step is to
calculate base-level employment E; for each Compustat firm. We do this by
using data for total employment E;.

The modeled-relation between total employment E; and base-level employ-
ment E; is determined by equations B.21, B.24, and B.26 (see Appendix B.3).
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Given values for a and b, these equations produce a unique relation between E;
and E;.

E; :fa,b(El) (B.42)

What we want is an inverse function that gives E; from E;:

E, = f_,(Er) (B.43)

Although there may be a way to define this inverse function analytically, it is
beyond my mathematical abilities. Instead, I use the model to reverse engineer
the problem. I define f, , numerically by inputting a range of different values for
E, into equations B.21, B.24, and B.26 and calculating E; for each value. The
result is a discrete mapping relating base-level employment to total employment
(see Fig. B.10). I then fit this mapping with a high-order polynomial, which then
serves as an approximation to the inverse function f ~'. This polynomial can then
be used to quickly and accurately calculate E; from E; for every Compustat firm.

B.5.3 Pay-Scaling Parameter

Once we have calculated base-level employment (E;) for all Compustat firms,
we can estimate their respective pay-scaling ratios (r) using the CEO-to-average-
employee pay ratio (C). The pay-scaling ratio r determines the rate at which
mean pay increases by hierarchical level.

Having estimated a, b, and E; for each Compustat firm, the model (specif-
ically equations B.24, B.29, B.31, B.32,and B.33) produces a CEO pay ratio
(Croger) that is a unique function of the pay-scaling parameter r:

Cmodel = fa,b,El (T‘) (B44)

As with base-employment, I am not aware of an analytical method for defin-
ing the inverse function faj;’El. Instead I use a numerical optimization method
to solve for r. I define an error function €(r) that quantifies the error between
the actual value of a firm’s CEO pay ratio (C,.p;ricr) and the value predicted by
the model (C,,4.) for a given value of r:

6(1‘) = | Cmodel - Cempirica1| (B.45)

For each firm, the correct value of r is that which minimizes this error func-
tion. I use the R non-linear optimization function ‘nlminb’ to solve this mini-
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Figure B.11: Fitting Compustat Firms with a Pay-Scaling Parameter

This figure shows the fitted pay-scaling parameters (r) for all Compustat firms. Panel A
shows the relation between the CEO pay ratio and firm size, with the fitted pay-scaling
parameter indicated by color. The pay-scaling parameter distribution for all firms (and
years) is shown in panel B. These results show the average of 5000 model runs, each
with different bootstrapped parameters a, b, and o.

mization problem. To ensure that there are no large errors, I discard Compustat
firms for which the best-fit r parameter produces an error that is larger than 5%
Of Cempirical- Fitted results for r are shown in Figure B.11.

B.5.4 Base-Level Pay

Once we have the pay-scaling parameter r, we can estimate base-level pay for
each Compustat firm. To do this, we set up a ratio between base level pay (I;)
and firm mean pay (I;) for both the model and Compustat data:

7 Compustat T model
I _ I 1
=Compustat 7 model
I I;

(B.46)

The modeled ratio between base pay and firm mean pay (I,;"°%!/I %) is
independent of the choice of base pay. This is because the modeled firm mean
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pay is actually a function of base pay (see Eq. B.31 and B.32). If we run the
model with ™! = 1, then Eq. B.46 reduces to:

= Compustat
I p

1 1

= Compustat =7 model
I, I,

(B.47)

We can then rearrange Eq. B.47 to solve for an estimated base pay for each

Compustat firm (I fompum):

7 Compustat
I P

7 Compustat __ ~T
I = (B.48)
T
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B.6 Compustat Model Results

I review here the results of the Compustat model that are not discussed in the
main paper. All results are generated using 5000 bootstrap model runs over
different values for the parameters a, b, and o. From the data generated by the
model, many different calculations are possible. I review here the following:
(1) estimates for income inequality within Compustat firms; (2) estimates for
income by hierarchical level; and (3) aggregate inequality of all firms in the
model.

B.6.1 Inequality Within Compustat Firms

Figure B.12 shows estimate of income inequality within Compustat firms. In
Figure B.12A, I illustrate how firm Gini indexes are related to both the CEO Pay
ratio and firm size. Note that the CEO pay ratio is a reliable indicator of firm
inequality only for firms of the same size. A general feature of a hierarchical
firm model is that when internal inequality is held constant, the CEO pay ratio
nonetheless tends to increase with firm size (a feature first demonstrated by
Herbert Simon [22] ). In Figure B.12A, this feature is evident as color contours
of constant firm inequality that scale with both firm size and the CEO pay ratio.

Figure B.12B shows the overall distribution of all firm Gini indexes. Accord-
ing to our model, 90% of Compustat firms have internal Gini indexes between
0.2 and 0.5. Note that the distribution is right-skewed — a small minority of
firms have extremely unequal pay.

In Figure B.12C I compare firm inequality in the Compustat model to inequal-
ity within the case-study firms discussed in Appendix B.2. The results indicate
that Compustat firms are slightly more unequal than the case study firms. How-
ever, because the case-study sample size is small, this difference is not statisti-
cally significant. A Kolmogorov-Smirnov test gives a p-value of 0.20, indicating
that there is a reasonable (20%) probability that the two firm samples (model
and case study) come from the same distribution. Thus, under the conventional
5% significance level, we cannot reject the null-hypothesis that these samples
come from the same distribution.

But if the case study data and Compustat model produce firm internal Gini
distributions that are statistically indistinguishable, why not simply use case
study data for the test of hypothesis B (hierarchical power has the strongest
effect on income)? There are several reasons the case study data cannot be
used. Firstly, the case study sample size is extremely small. Secondly, the firms
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Figure B.12: Compustat Model Results for Intra-Firm Inequality

This figure shows the firm internal Gini index results of the Compustat model. Panel A
shows how firm internal inequality (indicated by color) is related to the CEO pay ratio
and firm size. Panel B shows the distribution of modeled Gini indexes for all firms.
Panel C compares model results to the Gini index of case study firms (see section B.2.1
for case study methods). Panel D shows time evolution of the average Gini index of all
modeled firms. The shaded region indicates the 95% confidence interval. All results
are computed from 5000 model runs, each with different bootstrapped parameters a,

b, and o.
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Figure B.13: The Most Equal and Unequal Compustat Firms

This figure shows the 50 most unequal (panel A) and 50 most equal firms (panel B).
Points indicate the mean Gini index for each firm, while the error bars show the 95%
confidence interval calculated from 5000 bootstrap model runs.
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cover many different countries (not just the US, the desired country). Thirdly,
the observation years often do not overlap. To test hypothesis B, we need a large
firm sample from a single country in a single year. While model dependent, the
results inferred from Compustat data satisfy these conditions, while case study
data does not.

Figure B.12D shows the time-evolution of average inequality within Com-
pustat firms. During the late 1990s inequality rapidly increased, followed by
relative stability from 2000 onward. While the trend is clear, there is significant
uncertainty in the absolute level of inequality (as indicated by the shaded re-
gion). This uncertainty is due to the small case-study sample size on which key
model parameters are based (see Appendix B.5).

Finally, Figure B.13 shows Gini index estimates for the 50 most equal and
50 most unequal firms. What is most interesting about these results is the sec-
toral composition of the 50 most equal firms. The vast majority (80%) are en-
ergy/utility companies. In the United States, firms in the utility sector are highly
regulated, which leads to far more scrutiny over executive pay. Previous stud-
ies have found similar results — executives in regulated firms earn far less than
those in unregulated firms [23]. This finding has important implications for a
power theory of income distribution. It suggests that government regulation
serves as a check on power, limiting the degree to which elites are able to use
their status to amass wealth.

B.6.2 Income By Hierarchical Level

Besides estimating firm internal inequality, I use the Compustat model to es-
timate income and inequality by hierarchical level. To do this, we group all
individuals by their hierarchical level, regardless of firm membership (see Fig.
8 of main paper).

Model results are shown in Figure B.12, and are compared to the UK data
documented by Mueller et al. [4]. Figure B.12A shows how mean income changes
by hierarchical level. In both the Compustat model and Mueller’s data, mean in-
come increases super-exponentially with hierarchical level — that is, it increases
faster than an exponential function, which would appear as a straight line on the
log-linear scale. Figure B.12B shows how intra-level income inequality changes
by hierarchical level. For hierarchical levels 1-10, both the Compustat model
and Mueller’s data show similar trends.

The similarities between the model and Mueller’s data lend credence to the
model. However, what explains the differences? One key factor is that the
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Figure B.14: Compustat Model Results for Income by Hierarchical Level

This figure compares the results of the Compustat model to the UK data from Mueller et
al. [4]. Panel A shows average income by hierarchical level (across all firms) indexed to
pay in level 1. Panel B shows how intra-level inequality changes by hierarchical level.
Shaded regions indicate the 95% confidence region of the model, estimated from 5000
bootstrap runs (see Appendix B.5 ).

United States has much greater income inequality than the United Kingdom,
and the Compustat firm sample comes from the former and Mueller’s sample
the latter. As it turns out, both the Compustat model and Mueller’s data imply
aggregate levels of inequality that are consistent with their respective national
Gini indexes (see Fig. B.2 and B.15).

In this light, the results in Figure B.12A make sense — in the more unequal
United States, income scales more rapidly with hierarchical level than in the
United Kingdom. The results in Figure B.12B can be similarly explained — in
the more unequal United States, intra-hierarchical level income dispersion is
greater than in the UK.

Another interesting result in Figure B.12 is the conspicuous change in model
trends for hierarchical levels above 11. Above this level, mean income no longer
increases with hierarchical level, and intra-level inequality declines precipitously.
The former result may simply be an artifact of the particular firm sample. Go-
ing back to Figure B.12A, note that the four largest firms have particularly low
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CEO pay ratios. Given the model’s assumptions, only the very largest firms will
have more than 11 hierarchical levels. Since the 4 largest firms have particularly
low CEO pay ratios, resulting mean income in hierarchical levels 12-14 will be
relatively low.

The precipitous drop in intra-level inequality for hierarchical levels 12-14 is
likely due to the convergence to a size of one. This is because there is often only
one firm with 12 or more hierarchical levels, and the top level of this firm will
contain only one individual. By definition, there is zero inequality in a sample
size of one.

B.6.3 Aggregate Inequality

An important test of the Compustat model is to see if it produces aggregate levels
of inequality that are comparable to US empirical data. Figure B.15 shows the
results of such a test. Here I plot the time-series trends in both US historical
inequality and aggregate inequality in the Compustat model. This latter metric
is calculated by aggregating (by year) all individuals in the model into a single
sample, and then calculating the inequality of the resulting income distribution.

Figure B.15A compares the model’s aggregate Gini index against three dif-
ferent types of data published by the US Census: Gini by individual, family, and
household. Two findings are evident. Firstly, the model is roughly consistent
with the US empirical data over the period 2000-2015. However, the model
produces too little inequality during the 1990s. Secondly, the US empirical data
shows contradictory trends — roughly constant inequality among individuals,
but secularly increasing inequality among families and households. The model
reproduces the secular trend. But which empirical data should we believe? My
vote is that the secular increase is the correct trend.

Largely in response to his dissatisfaction with official inequality statistics,
Thomas Piketty [24] has focused on measuring inequality in the tail of the in-
come distribution. Figure B.15B and C show Piketty’s series for the top 10% and
1% income share in the United States. Both series show secularly increasing
inequality over the period in question. The model reproduces these trends quite
accurately, but at a lower absolute level of inequality.

How can it be that the model more or less matches US Gini index data, but
gives much less inequality than Piketty’s metrics? A plausible explanation is that
official data simply underestimates inequality. However, the validity (or lack their
of) of official inequality statistics is not something that this paper is concerned
with. Rather, I simply take official data as a given, and use it to test my power-
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income hypothesis. As such, the important take-home finding here is that the
Compustat model produces a level of inequality that is consistent with official
US data. This means that it is fair to compare the model’s results to other results
derived from official data.
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Figure B.15: Compustat Model Aggregate Inequality vs. US Historical Data

This figure compares estimates of aggregate income inequality in the Compustat model
to US historical data. Panel A compares the model GIni index to three different US
measures (the Gini of individuals, families and households). Panel B shows the income
share of the top 10%, while panel C shows the top 1%. The shaded regions indicate
the 95% confidence interval of the model, estimated over 5000 bootstrap runs. US Gini
index data is for individuals, and comes from US Census table PINC-05. The 2011 outlier
in US data is likely a statistical error. Families and Household Gini indexes are from the
Federal Reserve Bank, series GINIALLRF and GINTALLRH, respectively. US top 10% and
top 1% share data is from the World Wealth and Income Database, series sptinc992j.
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B.7 A Sensitivity Analysis of the Compustat Model

The Compustat model relies on three parameters — a, b, and o — that are deter-
mined from regressions on firm case study data (see Appendix B.5). Parameters
a and b define the span of control, and ultimately determine the ‘shape’ of a
firm’s hierarchy. The parameter o determines the level of income inequality
within each hierarchical level of a firm.

Unfortunately, our case study analysis contains only seven firms, and we have
no way of knowing if it is a representative sample on which to base our model.
Given this ambiguity, it is important to understand the ‘sensitivity’ of our model
results to changes in the parameters a, b, and o.

Recall that the model results presented in the paper are based on 5000 boot-
strap runs of the model — each run uses a different value of a, b, and o gener-
ated by running regressions on resampled (with replacement) case-study data. I
use this bootstrapped data to analyze how each parameter affects the following
metrics.

1. The Gy, metric for hierarchical levels;
2. The Gy, metric for firms;
3. Aggregate levels of inequality within the entire model

Figure B.16 shows the results of this analysis. We can immediately conclude
that the model is not sensitive to the value of o, which has virtually no effect
on any of the above metrics. However, the model appears to be highly sensitive
to the parameters a and b. This sensitivity is least pronounced for hierarchical
level results. But for firm Gy, and aggregate inequality, changes in a and b have
a strong effect on model results.

This is an important finding. It suggests that our hierarchical level results
(used to test the power-income hypothesis) are relatively robust. A different firm
case-study sample would likely not lead to significant changes in our findings.
Our firm results, however, are less robust. A different firm case-study sample
could lead to very different results.
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Figure B.16: A Sensitivity Analysis of Model Parameters
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B.8 The Between-Within Gini Metric and Effect Size

In this section, I discuss what is meant by ‘effect size’ (in the context of this paper)
and how my between-within Gini metric relates to more standard measures of
effect size.

B.8.1 What is Meant By ‘Effect Size’

In the context of income distribution, there are two possible ways that we might
define effect size:

Definition A: How much a factor effects total inequality.
Definition B: How much a factor effects individual income.

Effect size definition A refers to what we might call ‘inequality accounting’.
For instance, we might ask: how much do differences in pay between two groups
contribute to total inequality? The point is that this definition attempts to mea-
sure how a given factor effects total inequality. In general, inequality accounting
depends crucially on the size of the various groups.

Figure B.17 shows this phenomena. In both panels, groups A and B have
equal differences in mean income and equal within-group income dispersion.
However the total inequality obtained by merging the two groups varies dra-
matically depending on the relative size of A to B. In Fig. B.17A, the two groups
are of equal size, while in Fig. B.17B, group B is 50 times smaller than group A.
The resulting merger of A and B produces much more inequality when the two
groups are equal size than when they are not.

Effect size definition B is concerned only with the effect on individual income,
not on accounting for total inequality. The key difference is that for definition
A, we care about group size, while for definition B we do not. In more technical
terms, effect size definition B should be calculated by drawing equal sized samples
from each group. Perhaps the simplest and most intuitive metric of effect size
definition B is Cohen’s d (Eq. B.49), defined as the difference in means (i)
between two group samples (A and B), divided by the within-group standard
deviation (sy, ).

d=22"74 (B.49)

Sw

Cohen’s d can be interpreted as a signal-to-noise ratio. The ‘signal’ is the
difference in means (the effect we want to measure), while the ‘noise’ is the
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Figure B.17: How Group Size Affects Inequality Accounting

This figure shows how differences in group size effect total inequality. In both panels,
the income distribution of two different groups (A and B) are shown. The distributions
are displayed as ‘violin’ plots, where the thickness of the violin indicates the number of
individuals with that income. In both panels, groups A and B have identical differences
in mean income, and identical within-group income dispersion (Gini indexes are shown
above each violin). In the left panel, both groups have the same size. In the right panel,
group B is 50 times smaller than group A. The rightmost violin plot in each panel shows
the income distribution produced by merging groups A and B. Far more inequality is
produced when the two groups are of equal size than when there are large differences

in size.
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dispersion within groups, as measured by the standard deviation. In the case
of income, the size of the signal-to-noise ratio indicates how accurately we can
predict someone’s income based only on knowledge of their group membership
(either A or B). The larger the signal-to-noise ratio, the more accurate the pre-
diction.

In the example shown in Figure B.17, group A and B have the same difference
in means and the same within-group standard deviation in both the left and right
panel. Therefore Cohen’s d would measure an identical effect size. To be clear,
this is the effect on individual income (definition B), not the effect on inequality
(definition A).

B.8.2 Measuring Effect Size

In this paper, I am concerned only with effect size definition B — the effect on
individual income. I have proposed the between-within Gini metric (Gg,/) as a
measure of this type of effect size. This metric is defined by equation B.50, where
Gy is the Gini index of group means and Gy, is the mean of all within-group Gini
indexes:

Ggy = ?—B (B.50)
Gy

How does this metric relate to more standard measures of effect size? It
amounts to a signal-to-noise ratio that is similar to Cohen’s f > measure, the latter
of which is a generalization of Cohen’s d to many different groups. Cohen’s d
uses the difference between means in the numerator. In order to generalize to
many groups, f2 uses the sum of squared differences (SS). To obtain f2 (Eq.
B.51), we divide the sum of squares between-groups (SS;) by the sum of squares
within groups (SS,). See Fleishman [25] and Steiger [26] for a more detailed

discussion of the f? metric.!

_ SS,

f?=
SSy

(B.51)

To be clear, SSj is the sum of squared differences between each group mean
(x;) and the grand mean (i,,), multiplied by group size n. Similarly, SS,, is the
sum of squared differences between each observation (x;;) and its group mean
(x;). This double sum operates over each of the k groups and n observations
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within each group. Lastly, i indexes groups, and j indexes observations within
each group.

k
SSg=n » (x;—Xcy)? (B.52)
B i GM
i=1

SSw = Zkzzn:(xu_)_q)z (B.53)

i=1 j=1

Like Cohen’s d, the f2 metric is a signal-to-noise ratio. The ‘signal’ is the sum
of squares between groups, while the ‘noise’ is the sum of squares within groups.
When applied to income, the size of f2 indicates the accuracy with which we can
predict individual income from group membership.

Comparing the form of f2 and Gy, we see that the two measures of effect
size are very similar. Both are signal-to-noise ratios, consisting of a ratio of
between-group dispersion to within-group dispersion. The difference is that f?2
uses the sum of squares to measure dispersion, while G, uses the Gini index.
Given the similarity between Gy, and f 2, there should be some relation between
the two measures.

Rather than attempt to show this similarity analytically, I use simulated data.
I build a model based on the following assumptions:

1. Income within groups is lognormally distributed.

2. Within-group income dispersion is the same for all groups (but can vary
over different model iterations).

3. Mean income between groups is lognormally distributed (and can vary
between iterations).

4. Total inequality is (roughly) constant for all iterations.

w1

. The size of each group is constant.
6. The number of groups varies (between iterations) from 2 to 100.

For each iteration of the model, we define the mean income of each group by
drawing randomly from a lognormal distribution. We then simulate individuals
within each group by drawing randomly from (a different) lognormal distri-
bution. The model has 2 key parameters: the lognormal scale parameter that
defines the dispersion between groups, and the lognormal scale parameter that

!A more common formula for this metric is f2 = n?/(1—n?), where n = SS;/SSy, the sum
of squares between groups divided by the total sum of squares. Since SS; =SSz + SSyy,, simple
algebraic substitution can prove that the two definitions of f2 are equivalent.
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determines dispersion within groups. Varying these parameters changes the size
of the group-income effect. For consistency, I use only parameter combinations
that produce roughly the same level of total inequality (a Gini index of 0.5).

For each set of simulated data, I calculate both Gy, and f?2. Because analysis
of variance typically assumes that within-group data is normally distributed, I
calculate f? using the logarithm of income. The results are shown in Figure
B.18. As expected, there is an extremely strong relation between the two effect-
size measures. This indicates that an f? test of the power-income effect would
likely give very similar results to the Gy, findings shown in Figure 10 of the
main paper. To reiterate, I do not conduct such an f?2 test in this paper because
the relevant data is not available.

B.8.3 A Note on Group Size

The simulation shown in Figure B.18 shows a special case where all groups have
the same size. However, for the vast majority of the income-affecting factors
studied in this paper, the groups do not have the same size. For instance, there
are vastly more people in lower hierarchical levels than in upper hierarchical
levels. How do we deal with this situation?

The key ingredient of effect-size definition B is that it weights each different
group equally (rather than weighting a group by its size). One way to achieve
this equal weighting is to draw equal-sized samples from each group and cal-
culate Cohen’s f2 using equations B.51-B.53. But what if we do not have raw
data? What if we have only summary statistics such as the mean and standard
deviation of each group?

We can proceed by noting that an alternative way to define Cohen’s f2 is as
the ratio of between-group variance crlz3 and mean within-group variance o7, :

2
(02
=2 (B.54)
o
S (& — Fgu)?
2 _ WG — Xem )™
o2 = ; ; (B.55)
k n = \2 k 2
- (x;: — X)) o
n ij i _ “i
of = Z — = Z p (B.56)

Here, 0'123 and 0'_124, are derived by dividing SS; and SS,, (respectively) by nk.
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Figure B.18: Standard Effect Size Measure f2 vs. the Gini Metric Gy,

This figure compares Cohen’s f2 metric of effect size (Eq. B.51) to my between-within
Gini metric, Gy (Eq. B.50). The comparison uses simulated data, and each data point
represents different parameter combinations (see model assumptions above). Color
indicates the number of groups used in each iteration. R code for the model is available
in the Supplementary Material.
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Given group means (X;) and within-group standard deviations( o), we can use
this alternative formula to calculate f2.

What equation B.54 does is give identical weight to each group’s summary
statistics. This accomplishes the same thing as if we took equal sized samples
from raw data and used Eq. B.51-B.53 to calculate f2. This same logic applies
to my construction of the G, metric: it calculates a signal-to-noise ratio from
summary statistics by giving equal weight to each group.
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Appendix C

Appendices For A Hierarchy Model of Income
Distribution

Supplementary materials for this paper are available at the Open Science Frame-
work repository:

https://osf.io/3bsvt/
The supplementary materials include:
Data for all figures appearing in the paper;

Raw source data;
R code for all analysis;

> Wb =

Hierarchy model code.


https://osf.io/3bsvt/
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C.1 Sources and Methods

Fig. 4.4: Modeled Income Distribution vs. US Data

Complementary Cumulative Distribution

The US complementary cumulative distribution is calculated from data in the IRS
Individual Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Cumulative Distribution

The US cumulative distribution is calculated from data in the IRS Individual
Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Gini Index

I use two sources for the US Gini index. The first source is the US Current Popu-
lation Survey, Table PINC-08 (available from the US Census) over the years 1994
to 2015. The second source is the IRS Individual Complete Report (Publication
1304), Table 1.1, from 1996 to 2015. I estimate the Gini index by constructing a
Lorenz curve from the reported cumulative frequency data. R code implement-
ing this method is available in the Supplementary Material.

The Census and IRS data are not mutually consistent. IRS data is based
on tax units, not individuals. The advantage of the IRS data is that it is an
administrative record. Current Population Survey (CPS) data, on the other hand,
is obtained by interview. The advantage of the CPS data is that it explicitly counts
individuals. The disadvantage is that “there is a tendency in household surveys
for respondents to under report their income” [1].

Lorenz Curve

The US Lorenz curve is calculated from data in the IRS Individual Complete Report
(Publication 1304), Table 1.1, from 1996 to 2015.

Power Law Exponents

I estimate the power law exponent of the income distribution tail using the max-
imum likelihood method. US empirical data comes from the IRS Individual
Complete Report (Publication 1304), Table 1.1. Since this data is reported in


https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
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Table C.1: Power Law Cutoff Boundaries in US Data

Year Percentile «a

1996 0.987 2.92
1997 0.985 2.89
1998 0.996 2.58
1999 0.996 2.58
2000 0.995 2.54
2001 0.996 2.63
2002 0.996 2.67
2003 0.996 2.65
2004 0.995 2.59
2005 0.994 2.54
2006 0.993 2.54
2007 0.993 2.54
2008 0.994 2.66
2009 0.995 2.78
2010 0.994 2.73
2011 0.994 2.74
2012 0.992 2.64
2013 0.993 2.74
2014 0.992 2.70
2015 0.991 2.72

binned form, I use the binned log-likelihood equation developed by Virkar and
Clauset [2]:

k
.g == n(a - 1) * ln bmin + Z hi 1I1|: bi(].—(l) - bH_l(l_a) ] (C.].)
i=min
Here a is the power law exponent, b; and b;,; are consecutive bin bound-
aries, h; and h;,, are consecutive bin counts, k is the number of bins, and n

is the sum of bin counts above b_;, (the cutoff point for the power law). The

min
best-fit exponent a is the value that maximizes the log-likelihood function (&).
Since there is no closed-form solution to this maximization problem, I solve for
a numerically. To determine the power law exponent for the top 1% of incomes
in each year, I set the power law cutoff boundary (b,,;,) to the empirical bin that

is closest to the 99th percentile. Results are shown in Table C.1.
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To find the power law exponent in modeled data, I use the following maxi-
mum likelihood estimator:

" -1
d=1+n[21n Xi ] (C.2)

: Xmin
Here & is the best-fit power law exponent, x; is the ith data point, x,;, is the
lower bound of the power law, and n is the number of data points above x,,;,. To
ensure compatibility with empirical power law estimates, I estimate the model’s
power law exponent using the empirical cutoff values. For each model run, I set
Xin Dy randomly selecting a percentile value from Table C.1.

All data and code are available in the Supplementary Material.

Probability Density Function

I estimate the normalized probability density function for US income using data
from Current Population Survey Table PINC-08 (available from the US Census)
over the years 1994 to 2015. This table reports binned data.

To estimate the normalized probability density function in each year, I first
create a simulated income distribution (I) using bin midpoints. Each midpoint
income M, is repeated F; times, where F; is the frequency count for the ith bin.
I then normalize I by dividing all elements by the mean income I.

. S C.3)

Lastly, I fit the simulated income distribution (I) with a numerical density func-
tion. R code implementing this method is available in the Supplementary Mate-
rial.

Top 1% Income Share

Sources for top 1% income share data are shown in Table C.2.


https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
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Table C.2: US Top 1% Income Share Sources

Series Info Source
sfainc992j Pre-tax factor income | equal-split adults | Share | Adults | share of total (ratio) [3]
sfainc996i Pre-tax factor income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sfainc999i Pre-tax factor income | individuals | Share | All Ages | share of total (ratio) [3]
sfainc999t Pre-tax factor income | tax unit | Share | All Ages | share of total (ratio) [3]
sfiinc992j Fiscal income | equal-split adults | Share | Adults | share of total (ratio) [3]
sfiinc992t Fiscal income | tax unit | Share | Adults | share of total (ratio) [3]
sfiinc996i Fiscal income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sfiinc999i Fiscal income | individuals | Share | All Ages | share of total (ratio) [3]
sfiinc999t Fiscal income | tax unit | Share | All Ages | share of total (ratio) [3]
sptinc992j Pre-tax national income | equal-split adults | Share | Adults | share of total (ratio) [3]
sptinc996i Pre-tax national income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sptinc999i Pre-tax national income | individuals | Share | All Ages | share of total (ratio) [3]
sptinc999t Pre-tax national income | tax unit | Share | All Ages | share of total (ratio) [3]
sfiinc_z US World Top Incomes Legacy Series [4]
lakner Calculated from micro data [5]
piketty book no kgains Legacy data from Capital in the 21st Century [6]
piketty book with kgains Legacy data from Capital in the 21st Century [6]
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Fig. 4.5: Firm Size Distributions Associated With Top Incomes and
Wealth

Forbes 400 data is from the year 2014. Firm size data was collected by the
author. For public companies, firm size data comes from Compustat. For private
companies, data comes from firm websites and annual reports. The Execucomp
500 consists of the 500 top paid US executives in the Execucomp database in
each year from 1992 to 2015.

Fig. 4.13 Capitalist Income Fraction of US CEOs

CEO pay data comes from Execucomp, while firm size data comes from Com-
pustat. For the methods used to identify firm CEOs and the methods used to
calculate capitalist income fraction, see Appendix C.3.

Fig. 4.15: Comparing the Capitalist Gradient Model to US Data

Capitalist Income Fraction vs. Income Percentile

US data is for the year 2007 and comes from Piketty, Fig. 8.10 [6]. Data is
available at piketty.pse.ens.fr/en/capital21c2.

Capitalist Income Gini Index, Top 1% Share, and Size Distribution

Data for US capitalist income Gini index, top 1% share, and size distribution all
come from the IPUMS database. I define capitalist income as the sum of income
from dividends and interest. (Dividends = series INCDIVID, Interest = series
INCINT).

The main challenge with this dataset is that it censors income above $100,000.
All incomes above this threshold are replaced with a ‘topcode’ value. To deal
with this censoring, I use the method proposed by Jenkins et al. [7]. The gist of
this method is that you fit the uncensored data with a parametric distribution.
You then replace the censored (topcoded) data with stochastic values drawn
from the fitted parametric distribution (above the censor threshold). This gives
a partially synthetic dataset on which you compute whatever statistic you de-
sire. Because the process is stochastic, you repeat it many times, giving a range
of values for the given statistic.


piketty.pse.ens.fr/en/capital21c2

Gini Index
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Figure C.1: US Capitalist Income Inequality Estimates

This figure shows estimates of inequality in US capitalist income distribution. Data
comes from the IPUMS database CPS public micro data. Capitalist income is the sum of
dividends (series INCDIVID) and interest (series INCINT). Confidence intervals indicate
the uncertainty in the estimate that arises from the stochastic method used to replace
topcoded values.

I follow Jenkins et al. by using the GB2 distribution (generalized beta distri-
bution of the second kind) to fit uncensored data. I use the R GB2 package [8]
to fit both the dividends and interest data with a GB2 distribution. After replac-
ing topcoded values with synthetic data, I sum dividends and interest income to
estimate capitalist income. Figure C.1 show the resulting estimates for the Gini
index and top 1% share of capitalist income. Although there is uncertainty in
each annual estimate, the actual range of inequality values is dominated by the
secular trend.

All code and data used for this analysis are provided in the Supplementary
Material.

Capitalist Share of Total (National) Income

US Capitalist income share data comes from the Bureau of Economic Analysis,
Table 1.12. (National Income by Type of Income). Capitalist income is defined
as the sum of net dividends and net interest.
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Fig. 4.16: Historical Income Distribution Trends in the United States

CEO pay ratio data comes from Mishel and Schieder [9]. This ratio is calculated
using CEO income in the 350 largest US firms (ranked by sales), compared to
the average income of workers in the firm’s respective industry. Top 1% income
share data sources are shown in Table C.2. The dividend share of national in-
come is calculated using data from the Bureau of Economic Analysis, Table 1.12.
(National Income by Type of Income).

Power law exponents for the top 1% of incomes are estimated on binned data
using the method outlined by Virkar and Clauset [2]. I use income threshold data
from the World Wealth and Income Database (see Table C.3)

Table C.3: US Top 1% Power Law Exponent Data Sources

Series Info Source
tfainc992j Pre-tax factor income | equal-split adults | Threshold | Adults | constant 2015 local currency [3]
tfiinc992j  Fiscal income | equal-split adults | Threshold | Adults | constant 2015 local currency [3]
tfiinc992t  Fiscal income | tax unit | Threshold | Adults | constant 2015 local currency [3]
tptinc992j  Pre-tax national income | equal-split adults | Threshold | Adults | constant 2015 local currency [3]
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C.2 Hierarchical Structure and Pay within Case-Study Firms

Based on worldly experience, most people would agree that firms are hierarchi-
cally organized, and that pay tends to increase as one moves up the hierarchy.
However, the exact structure of this hierarchy has not been widely studied. This
is likely due in part to the lack of scholarly interest (hierarchy is not part of neo-
classical economic theory), but also the difficulty of obtaining firm payroll data,
which is usually proprietary. Nonetheless, a handful of case-studies exist that
have documented the hierarchical employment and pay structure of firms.

Table C.4 summarizes the case studies used in this paper, while Figure C.2
shows the hierarchical employment and pay structure of these firms. The firms
remain anonymous, and are named after the authors of the case-study papers.
By and large, these studies confirm our basic intuition about firm structure. Al-
though the exact shapes vary, all of the firms in Figure C.2 have a roughly pyra-
midal employment structure and inverse pyramid pay structure.

To analyze the structure of these firms in further detail, I define and calculate
the following three metrics: the span of control, the inter-level mean pay ratio,
and the intra-level Gini index. The span of control is defined as the employment
ratio between adjacent hierarchical levels. The inter-level mean pay ratio is the
ratio of mean pay between adjacent hierarchical levels. Lastly, the intra-level
Gini index is the Gini index of income inequality within a specific hierarchical
level of a firm.

Table C.4: Summary of Firm Case Studies

Source Years Country Firm Levels Zlcj)irtlrgf Ii::ie L;a)‘;::)(l:::i(;n;e
Audas [10] 1992 Britain All v v

Baker [11] 1969-1985 United States Management v v v
Dohmen [12] 1987-1996 Netherlands All v v v
Grund [13] 1995 & 1998 US and Germany All v v

Lima [14] 1991-1995  Portugal All v v v
Morais ~ [15] 2007-2010  Undisclosed All v v

Treble [16] 1989-1994  Britain All v v v

Notes: This table shows metadata for the firm case studies displayed in Fig. C.3. ‘Firm Levels’ refers to the portion of the

firm that is included in the study. ‘Management’ indicates that only management levels were studied.
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Figure C.3 shows data for these metrics for the 6 case study firms. Figure
C.3A shows how the span of control changes as a function of hierarchical level.
The data shows unambiguously that the span of control tends to increase as
one moves up the hierarchy. Figure C.3B shows how the inter-level pay ratio
changes as a function of hierarchical level. Again, this ratio tends to increase
as one moves up the hierarchy. Figure C.3C shows the intra-level Gini index
as a function of hierarchical level. Unlike the other two quantities, intra-level
income inequality seems to be more-or-less constant across all hierarchical levels
(a linear regression reveals no significant trend).

This case study data plays a central role in the hierarchical model developed
in this paper. From the case study evidence, I propose the following ‘stylized’
facts about firm employment and pay structure:

1. The span of control tends to increase with hierarchical level.

2. The inter-level pay ratio tends to increase with hierarchical level.

3. Intra-level income inequality is approximately constant across all hierar-
chical levels.

The case-study evidence informs the basic structure of the model, and also
some of its key parameters. Parameters for span of control are determined from
regressions on data in Figure C.3A, while parameters for intra-level income dis-
persion are determined from the mean of data in Figure C.3C. For a detailed
discussion of the model algorithm and parameter fitting procedure, see Sections
C.4 and C.5.
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Figure C.2: The Hierarchical Employment and Pay Structure of Six Different
Firms

This figure shows the pyramid structure of six different case study firms. Panel A shows
the hierarchical structure of employment, while panel B shows the hierarchical pay
structure.
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Figure C.3: Case Studies of Firm Hierarchical Structure

This figure shows data from 7 different single-firm case studies. Panel A shows how the
span of control (the employment ratio between adjacent levels) relates to hierarchical
level. Panel B shows how the ratio of mean pay between adjacent levels varies with
hierarchical level. In these two panels, the x-axis corresponds to the upper hierarchical
level in the ratio. Panel C shows levels of income inequality within individual hierar-
chical levels of each firm. Note that horizontal jitter’ has been introduced in all three
plots in order to better visualize the data (hierarchical level is a discrete variable). Grey
regions correspond to the 95% confidence interval for regressions (or in panel C, the
mean).

13
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C.3 Compustat Data

This paper makes extensive use of the Compustat and Execucomp databases.
Compustat contains data for most publicly traded US companies, while Exe-
cucomp contains data for executive compensation. Three key statistics used
throughout this paper are calculated from this data: firm mean income, the CEO-
to-average-employee pay ratio, and the capitalist income fraction of executives. 1
discuss the data and methods used for these calculations in the following sec-
tions.

C.3.1 Firm Mean Income

Firm mean income is calculated by dividing total staff expenses (Compustat Se-
ries XLR) by total employment (Compustat Series EMP):

Total Staff Expenses

Firm Mean Income = (C.49)

Total Employment

C.3.2 CEO Pay Ratio

Throughout this paper, I use the term ‘CEQO’ to refer to the executive at the top of
the corporate hierarchy. I identify CEOs using the titles contained in the Execu-
comp series TITLEANN. Because titles vary greatly by company, identifying the
top executive is not always a simple task. While a manual search would be most
accurate, this is unrealistic given that the Execucomp database contains over
275 000 entries. Instead, I use the following three-step algorithm to identify the
‘CEO’™:

1. Find all executives whose title contains one or more of the words in the
‘CEO Titles’ list (Table C.5).

2. Of these executives, take the subset whose title does not contain any of
the words in the ‘Subordinate Titles’ list (Table C.5).

3. If this search returns more than one executive per firm per year, chose
the executive with the highest pay.

After identifying the CEO (and matching CEO pay data with firm data con-
tained in the Compustat database), I calculate the CEO pay ratio using the fol-
lowing equation:

CEO Pay

CEO Pay Ratio = —;
Firm Mean Income

(C.5)
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Table C.5: Titles Used to Identify the ‘CEOQ’

CEOQ Titles: Subordinate Titles
president vp

chairman V-p

CEO cfo

Chief Executive Officer vice

chmn chief finance officer
president of
coo
division
div
president-
group president
chairmain-
co-president
deputy chairman
pres.-
Chief Financial Officer

Notes: This table shows the Execucomp titles used to identify the CEO of each
company. CEOs are deemed to be those whose title contains words in the left
column, but not those in the right column. Titles such as ‘president-’ and ‘pres-
ident of’ are included in the subordinate list because they typically refer to a
president of a division with the company: i.e. ‘president of western division’ or

‘president-western hemisphere’.

CEO pay ratio and firm mean income data are collectively available for roughly
6000 firm-year observations over the period 1992-2016. I use this data to ‘tune’
my hierarchical model of the firm (see Section C.5) . Figure C.4 shows selected
summary statistics of this dataset.

C.3.3 Capitalist Income Share of Executives

I define the capitalist income share of executives (K,.) as the ratio of stock-
options income to total income:

__ Stock Options

frac —

C.6
Total Income (C.6)
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Figure C.4: Selected Statistics from the Firm Sample Used for Model Tuning

This figure shows statistics for the Compustat firm sample used to tune my hierarchical

model. Panel A shows the number of firms in the sample over time, Panel B the average

firm size, and Panel C the share of US employment held by these firms. Panel D shows

the logarithmic distribution of firm size, and Panel E shows the logarithmic distribution

of the CEO pay ratio. Panel F shows the mean CEO pay ratio of all firms over time. Panel

G shows the logarithmic distribution of normalized mean pay (mean pay divided by the

average pay of the firm sample in each year). Panel H shows the ratio of mean pay in
the Compustat sample relative to the US average (calculated from BEA Table 1.12 by
dividing the sum of employee and proprietor income by the number of workers in BEA

Table 6.8C-D. Panel I shows the Gini index of firm mean pay over time.
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Table C.6: Data Used to Calculate Executive Capitalist Income Fraction

Series

Description

Reporting
Format

RSTKGRNT

The value of restricted stock granted during the year
(determined as of the date of the grant).

1992

OPTION_AWARDS_BLK_VALUE

The aggregate value of stock options granted to the
executive during the year as valued using Standard &
Poor’s Black-Scholes methodology.

1992

TDC1

Salary, Bonus, Other Annual, Total Value of Restricted
Stock Granted, Total Value of Stock Options Granted
(using BlackScholes), Long-Term Incentive Payouts, and
All Other

1992

STOCK_AWARDS_FV

Fair value of all stock awards during the year as detailed
in the Plan Based Awards table. Valuation is based upon
the grant-date fair value as detailed in FAS 123R.

2006

OPTION_AWARDS_FV

Fair value of all options awarded during the year as
detailed in the Plan Based Awards table. Valuation is
based upon the grant-date fair value as detailed in FAS
123R.

2006

TDC1

Salary, Bonus, Non-Equity Incentive Plan
Compensation, Grant-Date Fair Value of Option Awards,
Grant-Date Fair Value of Stock Awards, Deferred
Compensation Earnings Reported as Compensation,
and Other Compensation.

2006

The Execucomp database contains two main accounting methods for valu-

ing stock options: a ‘1992’ reporting format that applies from 1992 to 2005’,

and a ‘2006’ reporting format that applies from 2006 onward. These series are

summarized in Table C.6. For both reporting formats, the relevant total income

series (TDC1) remains the same. I calculate the capitalist income fraction of

executives using the following two formulas for 1992 format and 2006 format,

respectively:
RSTKGRNT + OPTION_AWARDS BLK VALUE
Kirac 1992 = TDC1 (C.7)
STOCK_AWARDS FV + OPTION _AWARDS FV
Kfrac_2006 = (C8)

TDC1
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Figure C.5: Firm Sales vs. Payroll in the Compustat US Database

This figure plots normalized firm sales against normalized firm payroll for every firm-
year observation in the Compustat US database from 1950 to 2015. Each dot is a specific
firm in a specific year. To adjust for inflation, I divide sales and payroll by the database
averages in the respective year.

C.3.4 Firm Sales vs. Firm Payroll

In section 4.4, I use the hierarchy model to reproduce historical trends in the
CEO pay ratio. The empirical data from Mishel and Schieder [9] uses the CEOs
in the top 350 US firms ranked by sales. Since the hierarchy model does not
have sales, I calculate the CEO pay ratio by ranking firms by total payroll. Since
payroll is highly correlated with firm sales (Fig. C.5), the former is a good proxy
for the latter.
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C.4 Hierarchy Model Equations

In this section, I outline the mathematics underlying my hierarchical model of
the firm. The model assumptions, outlined below, are based on the stylized facts
gleaned from the real-world firm data in section C.2.

1. Firms are hierarchically structured, with a span of control that increases
exponentially with hierarchical level.

2. The ratio of mean pay between adjacent hierarchical levels increases ex-
ponentially with hierarchical level.

3. Intra-hierarchical-level income is lognormally distributed and constant across
all levels.

Using these assumptions, I first develop an algorithm that describes the hi-
erarchical employment within a model firm, followed by an algorithm that de-
scribes the hierarchical pay structure.

Table C.7: Notation

Definition

span of control parameter 1

span of control parameter 2

CEO to average employee pay ratio
employment

cumulative distribution function

Gini index of inequality

hierarchical level

average income

lognormal location parameter
number of hierarchical levels in a firm
pay ratio between adjacent hierarchical levels
pay-scaling parameter

span of control

lognormal scale parameter

total for firm

round down to nearest integer
product of a sequence of numbers

M:(—qqmﬁ:’m:‘gNl:‘QﬁjMQ@Q‘g
g
=

sum of a sequence of numbers
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C.4.1 Generating the Employment Hierarchy

To generate the hierarchical structure of a firm, we begin by defining the span
of control (s) as the ratio of employment (E) between two consecutive hierar-
chical levels (h), where h = 1 is the bottom hierarchical level. It simplifies later
calculations if we define the span of control in level 1 as s = 1. This leads to the
following piecewise function:

1 if h=1
sh=1{ E_ (C.9)
" 2l if h>2
Ey
Based on our empirical findings in Section C.2, we assume that the span of
control is not constant; rather it increases exponentially with hierarchical level.
I model the span of control as a function of hierarchical level (s;) with a simple

exponential function, where a and b are free parameters:

1 if h=1 (C.10)
S = .
" a-et if h>2

As one moves up the hierarchy, employment in each consecutive level (Ej)
decreases by 1/s,,. This yields Eq. C.11, a recursive method for calculating E,.
Since we want employment to be whole numbers, we round down to the nearest
integer (notated by |). By repeatedly substituting Eq. C.11 into itself, we can
obtain a non-recursive formula (Eq. C.12). In product notation, Eq. C.12 can
be written as Eq. C.13.

E
E,=l = for h>1 (C.11)
Sh
11 1
E,=|E-— —- = (C.12)
Sy S3 Sh
1
E=LE] |- (C.13)
i=1 "1

Total employment in the whole firm (E;) is the sum of employment in all
hierarchical levels. Defining n as the total number of hierarchical levels, we get
Eq. C.14, which in summation notation, becomes Eq. C.15.

ET :El +E2+...+En (C.14)
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Er= ) E, (C.15)

In practice, n is not known beforehand, so we define it using Eq. C.13. We
progressively increase h until we reach a level of zero employment. The highest
level n will be the hierarchical level directly below the first hierarchical level with
zero employment:

n={h | E,>1 and E,,, =0} (C.16)

To summarize, the hierarchical employment structure of our model firm is
determined by 3 free parameters: the span of control parameters a and b, and
base-level employment E;. Code for this hierarchy generation algorithm can be
found in the C++ header files hierarchy.h and exponents.h, located in the
Supplementary Material.

C.4.2 Generating Hierarchical Pay

To model the hierarchical pay structure of a firm, we begin by defining the inter-
hierarchical pay-ratio (p;) as the ratio of mean income (I) between adjacent
hierarchical levels. Again, it is helpful to use a piecewise function so that we
can define a pay-ratio for hierarchical level 1:

1 if h=1

= I (C.17)
i ST
Iy
Based on our empirical findings in Section C.2, we assume that the pay ratio
increases exponentially with hierarchical level. I model this relation with the

following function, where r is a free parameter:

(1 ifr=1 18
L I T '

Using the same logic as with employment (shown above), the mean income
I, in any hierarchical level is defined recursively by Eq. C.19 and non-recursively
by Eq. C.20.

- I
I,=-2=2 (C.19)
Pn
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h
L=0L]]r (C.20)
i=1

To summarize, the hierarchical pay structure of our model firm is determined
by 2 free parameters: the pay-scaling parameter r, and mean pay in the base
level (I;). Code for generating hierarchical pay can be found in the C++ header
files model . h, located in the Supplementary Material.

Useful Statistics

Two statistics are used repeatedly within the model: mean firm pay, and the
CEO-to-average-employee pay ratio.
Mean income for all employees (I;) is equal to the average of hierarchical

level mean incomes (I;,) weighted by the respective hierarchical level employ-
ment (E):

L=S"1.2h (C.21)

To calculate the CEO pay ratio, we define the CEO as the person(s) in the
top hierarchical level. Therefore, CEO pay is simply I,, average income in the
top hierarchical level. The CEO pay ratio (C) is then equal to CEO pay divided
by average pay:

(C.22)

@)
I
'?ll: 1

C.4.3 Adding Intra-Level Pay Dispersion

Up to this point, we have modeled only the mean income within each hierarchical
level of a firm. The last step in the modeling process is to add pay dispersion
within each hierarchical level.

I assume that pay dispersion within hierarchical levels is lognormally dis-
tributed. The lognormal distribution is defined by location parameter u and
scale parameter . Our empirical investigation of firm case studies indicated
that pay dispersion with hierarchical levels is relatively constant (see Fig. C.3C).
Given this finding, I assume identical inequality within all hierarchical levels.
This means that the lognormal scale parameter o is the same for all hierarchical
levels.
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A. Adding Pay Dispersion Within Each Hierarchical Level
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Figure C.6: Adding Intra-Level Pay Dispersion to a Model Firm

This illustrates a model firm with lognormal pay dispersion in each hierarchical level.
The model firm has a pay-scaling parameter of r = 1.2 and an intra-level Gini index
of 0.13. Panel A shows the separate distributions for each level, with mean income
indicated by a dashed vertical line. Panel B shows contribution of each hierarchical
level to the resulting income distribution for the whole firm (income density functions

are summed while weighting for their respective employment).
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In order to add dispersion within each hierarchical level, I multiply mean
pay I, by a lognormal random variate with an expected mean of one. Formally,
this is represented by Eq. C.23. Since the mean of a lognormal distribution is
equal to e#*+29” T leave it to the reader to show that a mean of one requires that
u be defined by Eq. C.24.

I,=1I,- InA(u,0) (C.23)

Given a value for o (which is a free parameter), we can define the pay dis-
tribution within any hierarchical level of a firm. This process is shown graphi-
cally in Figure C.6. Figure C.6A shows the lognormal income distributions for
each hierarchical level of a 5-level firm. Figure C.6B shows the size-adjusted
contribution of each hierarchical level to the overall intra-firm income distribu-
tion. Lower levels have more members, and thus dominate the overall distribu-
tion. The code implementing this method can be found in the C++ header file
model.h, located in the Supplementary Material.

C.4.4 Calculating Hierarchical Power

I define an individual’s hierarchical power as the number of subordinates (S)
under their control, plus 1:

P=S5S+1 (C.25)

Because the hierarchy model simulates only the aggregate structure of firms
(employment by hierarchical level), hierarchical power is calculated as an av-
erage per rank. For hierarchical rank h, the average hierarchical power (P,) is
defined as the average number of subordinates (Sh) plus 1:

P,=S,+1 (C.26)

Each individual with rank h is assigned the average power P,. The average
number of subordinates S, is equal to the sum of employment (E) in all subor-
dinate levels, divided by employment in the level in question:

E
— (C.27)

h—1 .
Sh - L
~ E,

i=1
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Figure C.7: Calculating the Average Number of Subordinates

As an example, consider the hierarchy in Figure C.7. The average number of
subordinates below each individual in hierarchal level 3 (red) would be:

o _ Ei+Ey _ 1648 _

° E5 4

6 (C.28)

Therefore, these individuals would all be assigned a hierarchical power of 7.
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Table C.8: Model Parameters

Parameter | Definition Action Scope
a Firm size distribution Determines the skewness of the firm
exponent size distribution
Determines the shape of the firm
a, b Span of control parameters . = Identical for all firms.
hierarchy.
Empl tinb Used to build the employment
mployment in base
E; . . ym hierarchy from the bottom up. Specific to each firm.
hierarchical level )
Determines total employment.
Determines the rate at which mean
r Pay-scaling parameter income (within a firm) increases by Specific to each firm.
hierarchical level.
. . ) Sets the base level income of the
- Mean pay in base hierarchical i . . i . i
Iy level firm, which determines firm average | Specific to each firm.
eve
pay.
Intra-hierarchical level pa Determines the level of inequali
o Y quatty Identical for all firms.

dispersion parameter

within hierarchical levels of a firm.

C.5 Restricting Parameters

As discussed in section C.4, the hierarchy model has many ‘free’ parameters.

Table C.8 summarizes all of the parameters used in this model. While free to

take on any value, I restrict these parameters exclusively using empirical data.

In the following sections, I outline the methods used for this restriction.

C.5.1 Firm Size Distribution

Recent studies have found that firm size distributions in the United States [17]

and other G7 countries [18] can be modeled accurately with a power law. A

power law has the simple form shown in Eq. C.29, where the probability of

observation x is inversely proportional to x raised to some exponent a:

1
p(x) o< —
X

(C.29)

Figure C.8 compares the US firm size distribution with a power law of ex-
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Figure C.8: The United States Firm Size Distribution

This figure shows the US firm size distribution compared to a power law distribution
with exponent a = 2.01 (a simulation with 15 million firms) . The US histogram
combines data for ‘employer’ firms with data for unincorporated self-employed
workers. Data for ‘employer’ firms is from the US Census Bureau, Statistics of U.S.
Businesses (using data for 2013). This data is augmented with Bureau of Labor
Statistics data for unincorporated self-employed workers (series LNU02032185 and
LNU02032192). The histogram preserves Census firm-size bins, with self-employed
data added to the first bin. The last point on the histogram consists of all firms with
more than 10,000 employees.

ponent a = 2.01. Although not perfect, the fit is good enough for modeling
purposes. I assume that the firm sizes can be modeled with a discrete power
law random variate. I model the US firm size distribution with a = 2.01.

A characteristic property of power law distributions is that as a approaches
2, the mean becomes undefined. In the present context, this means that the
model can produce firm sizes that are extremely large — far beyond anything
that exists in the real world. To deal with this difficulty, I truncate the power
law distribution at a maximum firm size of 2.3 million. This happens to be the
present size of Walmart, the largest US firm in existence.

Code for the discrete power law random number generator can be found in
the C++ header file rpld.h, located in the Supplementary Material. This code
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Figure C.9: Density Estimates for Span of Control Parameters

This figure shows density estimates for the parameters a and b, which together deter-
mine the ‘shape’ of the firm hierarchy. These parameters are determined from regres-
sions on firm case-study data (Fig. C.3). The density functions are estimated using a
bootstrap analysis, which involves resampling (with replacement) the case study data
many times, and calculating the parameters a and b for each resample.

is an adaption of Collin Gillespie’s discrete power law generator found in the R
poweRlaw package [19] (which is, in turn, an adaption of the algorithm outline
by Clauset [20]).

C.5.2 Span of Control Parameters

The parameters a and b together determine the shape of firm employment hier-
archy. These parameters are estimated from an exponential regression on case
study data (Fig. C.3A). The model proceeds on the assumption that these pa-
rameters are constant across all firms.

Because the case-study sample size is small, there is considerable uncertainty
in these values. I incorporate this uncertainty into the model using the bootstrap
method [21], which involves repeatedly resampling the case-study data (with
replacement) and then estimating the parameters a and b from this resample.
Figure C.9 shows the probability density distribution resulting from this boot-
strap analysis. I run the model many times, each time with a and b determined
by a bootstrap resample of case-study data.
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Code implementing this bootstrap can be found in the C++ header file
boot_span.h.

C.5.3 Base Level Employment

Given span of control parameters a and b, each firm hierarchy is constructed
from the bottom hierarchical level up. Thus, we must know base level employ-
ment. In practice, however, we don’t know this value — instead we are given
total employment for a particular firm. While it may be possible to use the equa-
tions in section C.4 to define an analytic function relating total employment to
base level employment, this is beyond my mathematical abilities.

Instead, I use the model to reverse engineer the problem. I input a range of
different base employment values into equations C.10, C.13, and C.15 and cal-
culate total employment for each value. The result is a discrete mapping relating
base-level employment to total employment. I then use the C++ Armadillo in-
terpolation function to linearly interpolate between these discrete values. This
allows us to predict base level E;, given total employment E;. Code implement-
ing this method can be found in the C++ header file base_fit.h, located in the
Supplementary Material.

C.5.4 Pay-Scaling Parameter

The pay-scaling ratio r determines the rate at which mean pay increases by hier-
archical level. Unlike the span of control parameters, the pay-scaling parameter
is allowed to vary between firms. But how should it vary? I restrict the variation
of this parameter in a two-step process. I first ‘tune’ the model to Compustat
data. This results in a distribution of pay-scaling parameters specific to Com-
pustat firms. I then fit this data with a parameterized distribution, from which
simulation parameters are randomly chosen.

Fitting Compustat Pay-Scaling Parameters

I fit the pay-scaling parameter r to Compustat firms using the CEO-to-average-
employee pay ratio (C). The first step of this process is to build the employment
hierarchy for each Compustat firm using parameters a, b, and E; (the latter is
determined from total employment). Given this hierarchical employment struc-
ture, the CEO pay ratio in the modeled firm is uniquely determined by the pa-
rameter r. Thus, we simply choose r such that the model produces a CEO pay
ratio that is equivalent to the empirical ratio.
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Figure C.10: Fitting Compustat Firms with a Pay-Scaling Parameter

This figure shows the fitted pay-scaling parameters () for all Compustat firms. Panel A
shows the relation between the CEO pay ratio and firm size, with the fitted pay-scaling
parameter indicated by color. The discrete changes in color (evident as vertical lines)
correspond to changes in the number of hierarchical levels within firms. The pay-scaling
parameter distribution for all firms (and years) is shown in panel B.

To solve for this r value, I use numerical optimization (the bisection method)
to minimize the error function shown in Eq. C.30. Here Ceympystar a0d Cryoqer are
Compustat and modeled CEO pay ratios, respectively.

G(T‘) = | Cmodel - C'Compustat| (C-BO)

For each firm, the fitted value of r minimizes this error function. To ensure
that there are no large errors, I discard Compustat firms for which the best-fit r
parameter produces an error that is larger than € = 0.01). Fitted results for r
are shown in Figure C.10. Code implementing this method can be found in the
C++ header file fit_model.h, located in the Supplementary Material.

Generating a Pay Scaling Distribution

Once we have generated r parameters for every Compustat firm, the next step
is to fit a parameterized distribution to this data. For Compustat firms, the dis-
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Figure C.11: Modeling the Firm Pay Scaling Distribution

This figure visualizes the model used to simulate firm pay-scaling parameters (r). Panel
A shows the relation between r and firm employment for Compustat firms. For the
simulation, the distribution of r is modeled with the lognormal variate r,. Panel B
shows how the lognormal scale parameter oy (defined by Eq. C.35) changes with firm
size. The straight line indicates the modeled relation. Panel C shows how the modeled
dispersion of In(r,) declines with firm size, and how this relates to Compustat r data.
The 20 range indicates 2 standard deviations from the mean (on log-transformed data).
Panel D shows how the distribution of r for Compustat firms compares to the simulated
distribution achieved by applying the model to the same Compustat firms.
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persion of r is approximately lognormal, and tends to decline with firm size (see
Figure C.11A). I model r as a shifted function of the lognormal variate r:

r=1+InA4(ry) (C.31D)

The lognormal variate r, is defined by location parameter u and scale pa-
rameter o. While u is assumed to be constant for all firms, o is a function of
firm size E:

ro(E)=In A (ry; u,og) (C.32)

I use the tuned Compustat data to solve for the parameters u and o. We first

transform Compustat r values using Eq. C.33 to get the Compustat distribution
of ry:

ro=r—1 (C.33)

The best-fit value for u is defined by taking the mean of In(r):

u = In(r,) (C.34)

Similarly, we can solve for the best-fit value for o by taking the standard devia-
tion of In(r,). However, unlike u, the value o will depend on the size range of
firms (E):

oy =SD[ In(ry) 1z (C.35)

Figure C.11B plots o vs. E for logarithmically spaced size groupings of
Compustat firms. I model this relation using a log-linear regression. Figure
C.11C shows how the modeled dispersion in r, varies with firm size, and how
this compares to Compustat data.

Once we have fitted the parameters u and o to the tuned Compustat data,
we can generate r values for simulated firms using equations C.31 and C.32.
Although the model is simple, it produces reasonably accurate results. To test
this accuracy, we can apply the model to the same Compustat firms for which
it is ‘tuned’. For each Compustat firm, we use the method outlined above to
stochastically generate a pay-scaling value r. As Figure C.11D shows, the result-
ing simulated distribution of r fairly accurately reproduces the original data.

When we move from simulating Compustat firms to a real-world distribution
of firms, this model involves significant extrapolations for small firms. Why?
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The Compustat firm sample has very few observations for firms smaller than
100. And those small firms that are included in the sample are likely not repre-
sentative of the wider population, since they are small public firms. In the real
world, virtually all small firms are private. As with all extrapolations, we simply
do the best with the data that is available, while noting that better data might
render the extrapolation moot. The code implementing this model can be found
in the C++ header file r_sim.h, located in the Supplementary Material.

Note: When attempting to reproduce historical trends in US income inequality
(Fig. 4.18), I vary the mean of the pay-scaling distribution by multiplying the
fitted lognormal component by a random constant c:

r=1+c-InA(ry) (C.36)

C.5.5 Base-Level Mean Pay

As with the pay-scaling parameter, base level mean pay varies across firms. How
should it vary? Again, [ restrict the variation of this parameter in a two-step
process. I first ‘tune’ the model to Compustat data. This results in a distribution
of base pay specific to Compustat firms. I then fit this data with a parameterized
distribution, from which simulation parameters are randomly chosen.

Fitting Compustat Base Level Pay

Having already fitted a hierarchical pay structure to each Compustat firm (in the
process of finding r), we can use this data to estimate base pay for each firm.
To do this, we set up a ratio between base level pay (I;) and firm mean pay (I;)
for both the model and Compustat data:

I-1Compustat I‘lmodel

rCompustat = 7 model
I; I;

(C.37)

The modeled ratio between base pay and firm mean pay (I;"°%!/I™°%) is
independent of the choice of base pay. This is because the modeled firm mean
pay is actually a function of base pay (see Eq. C.20 and C.21). If we run the
model with ™! = 1, then Eq. C.37 reduces to:

7= Compustat
I p

1 1
7 Compustat 7 model
I, I;

(C.38)
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Figure C.12: Modeling Firm Base Level Mean Pay
This figure shows the distribution of fitted base level mean pay for Compustat firms

(histogram). I model this data with a gamma distribution, from which simulated

firm base mean pay is randomly drawn.

We can then rearrange Eq. C.38 to solve for an estimated base pay for each

Compustat firm (I fompumt):

= Compustat
I p

7 Compustat __ T
Il = W (C39)
T
Code implementing this method is found in the C++ header file fit _model.h,
located in the Supplementary Material.

Generating a Base Pay Distribution

Once each Compustat firm has a fitted value for base-level mean pay, we fit this
data with a parametric distribution which is then used to stochastically generate
base-level mean pay for the simulation. Since Compustat data is comprised of
observations over multiple years, in order to aggregate this data into a single
distribution, we must account for inflation. Rather than use a price index like
the GDP deflator, I divide all firm mean pay data by the average Compustat mean
pay in the appropriate year. Since our simulation is concerned only with relative
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Figure C.13: Density estimates for Intra-Hierarchical Level Pay Dispersion
Parameter o

This figure shows the distribution of the lognormal scale parameter o, which determines
pay dispersion within all hierarchical levels of all firms. The distribution is calculated

using the bootstrap method.

incomes (rather than absolute incomes) no pertinent information is lost in this
process.

I model the Compustat firm base pay distribution with a gamma distribution
(Fig. C.12). Note that because the Compustat data has a bimodal structure (that
I do not aim to replicate), the gamma distribution is not a particularly strong fit.
Nonetheless the gamma model closely replicates the inequality of firm base pay
(which has a Gini index of roughly 0.35). Code implementing this model can be
found in the C++ header file base_pay_sim.h (in the Supplementary Material).

C.5.6 Intra-Hierarchical Level Income Dispersion

Intra-hierarchical level income dispersion is modeled with a lognormal distri-
bution, with the amount of inequality determined by the scale parameter o. I
estimate o from the case-study data shown in Figure C.3C. This data uses the
Gini index as the metric for dispersion.

To estimate o, we first calculate the mean Gini index of all data (G). We
then use Eq. C.40 to calculate the value o, which corresponds to the lognormal
scale parameter that would produce a lognormal distribution with an equivalent
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Gini index. This equation is derived from the definition of the Gini index of a
lognormal distribution: G = erf(o/2).

o=2-erf Y(G) (C.40)

The model proceeds on the assumption that o is constant for all hierarchical
levels within all firms. Because the case-study sample size is small, there is con-
siderable uncertainty in these values. I quantify this uncertainty using the boot-
strap method [21], which involves repeatedly resampling the case-study data
(with replacement) and then estimating the parameter o from this resampled
data.

Figure C.13 shows the probability density distribution resulting from this
bootstrap analysis. In order to incorporate this uncertainty, I run the model
many times, with each run using a different bootstrapped value for o. Code
implementing this method can be found in the C++ header file boot_sigma.h,
located in the Supplementary Material.

C.5.7 Summary of Model Structure

The model is implemented in C++ using a modular design. Each major task is
carried out by a separate function that is defined in a corresponding header file.
Table C.9 summarizes this structure sequentially in the order that functions are
called. In each step, I briefly summarize the action that is performed, giving
reference to the section where this action is described in detail.
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Table C.9: Model High-Level Structure
Step | Action Reference Section Parameter(s) | Header File(s)
boot_span.h
1 Bootstrap case-study data C.5.2,C5.6 a, b, o i
boot_sigma.h
Get Compustat base-level .
2 C.5.3 Eq base_fit.h
employment
Fit Compustat pay-scali
3 PRBHER PPy SRy C.5.4 r fit_model.h
parameters
Get Compustat base-level - )
4 C.5.5 I fit_model.h
mean pay
Generate power law firm size
5 s C.5.1 a rpld.h
distribution
Get simulation base-level )
6 C.5.3 E; base_fit.h
employment
Simulate pay-scaling
7 parameter distribution by C.54 r r_sim.h
fitting Compustat data
Simulate base mean pay
8 distribution by fitting C.5.5 I, base_pay_sim.h
Compustat data
9 Run hierarchy model C.4 all model.h

Notes: Model code makes extensive use of Armadillo, an open-source C++ linear algebra library [22].
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C.6 The Adjusted Hierarchy Model

The hierarchy model tends to underestimate US income inequality. I think that
this is caused by the model’s reliance on Compustat Firm data (see Appendix
C.5), which is biased towards large firms. The result is that the model likely
has too little inter-firm income dispersion. Here I present the results of an ad-
justed model in which inter-firm income dispersion is increased so that the model
closely reproduces US macro-level data.

As outlined in Appendix C.5, inter-firm income dispersion is modeled by fit-
ting a gamma distribution to Compustat data. The gamma distribution has the
following probability density function:

1 k=1, ,—k/6
= — . C.41
p(x) roer X e (C.41)
In the original model, the parameters k and 6 are both determined by empirical
data. In the adjusted model, I introduce a fudge-factor ¢ that allows me to adjust
the fitted k parameter by a constant amount:

kadjust =c- kﬁt (C.42)

The adjusted model then uses the parameter kg, instead of kg. All of the
model’s other parameters remain constant. Note that for ¢ > 1, inter-firm dis-
persion is decreased (relative to the original model). For ¢ < 1, inter-firm disper-
sion is increased. I choose the value ¢ so that the adjusted model produces the
best match to US data. Model results for ¢ = 0.5 are shown in Figure C.14 in the
same format as the original model was presented in Figure 4.4. By increasing
inter-firm dispersion, we significantly improve the fit of the model to the body
of the US distribution of income. Note that the adjusted model’s Gini index is
significantly higher than in the original model, and now better matches US data.
Results in the tail remain virtually unchanged. (This is expected, since hierarchy
shapes the tail).

C.6.1 Hierarchical Redistribution with the Adjusted Model

Because the hierarchy model tends to underestimate US income inequality, the
hierarchical redistribution model tends to be shifted to the left relative to US
empirical data (see Fig. 4.18). As shown in Figure C.15, by using the adjusted
model to calculate hierarchical redistribution, this problem disappears. Note,
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Figure C.14: Adjusted Model Income Distribution vs. US Data

This figure compares various aspects of the adjusted model’s
income distribution to US data over the years 1992-2015.
The adjusted model has increased inter-firm income disper-
sion relative to the original model. Panel A shows the Gini
index, with two different US sources — the Current Popula-
tion Survey (CPS) and the Internal Revenue Service (IRS).
Panel B shows the top 1% income share, using data from 17
different time series. Panel C shows the results of fitting a
power law distribution to the top 1% of incomes (where a
is the scaling exponent). Panel D plots the income density

curve with mean income normalized to 1 (using data from
the CPS). Panels E, F, and G use IRS data to construct the
Lorenz curve, cumulative distribution, and complementary
cumulative distribution (respectively). The cumulative dis-
tribution shows the proportion of individuals with income
less than the given x value. The complementary cumula-
tive distribution shows the proportion of individuals with
income greater than the given x value. Note the log scale
on the x-axis for these last two plots. For sources and meth-
ods, see Appendix C.1.
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Figure C.15: The Adjusted Hierarchical Redistribution Model vs. US Data

This figure compares adjusted model results to historical trends in US income distri-

bution. The adjusted model has increased inter-firm income dispersion relative to the

original model. Model results are produced by varying the hierarchical pay-scaling pa-

rameter, indicated by color. Each colored point represents a single model iteration. US

empirical data is shown in black, with horizontal error lines indicating the range of 17

different estimates for the top 1% income share. The point indicates the median of these

estimates. Panel A plots the CEO pay ratio against the top 1% share, while panel B plots

the dividend share of national income against the top 1% share. Panel C plots the fitted

power law exponent of the top 1% of incomes against the top 1% income share. For

sources and methods, see Appendix C.1.
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however, that increasing inter-firm dispersion does not fix the model/empirical
discrepancy in the slope of the dividends vs. top 1% relation (Fig. C.15B).

C.6.2 Adjusting the Capitalist Gradient Model

The capitalist gradient model is built on the following functional relation be-
tween hierarchical power (P) and capitalist income fraction (Kg,.):

K. = 0.051n(P) (C.43)

Recall that hierarchical power is defined as the number of subordinates + 1.
All individuals with no subordinates therefore have hierarchical power P = 0.
Since In(1) = 0, all these individuals will have exactly zero capitalist income. By
convention, income distribution is usually only tabulated for non-zero incomes.
Thus these individuals are excluded.

In the adjusted capitalist gradient model, I introduce an adjustment to the
capitalist income fraction equation:

K. =0.05In(P) + € (C.44)

Here € is a constant very close to zero. Its effect is only felt when P = 1. Instead
of getting K,,. = 0, we get K;,. = €. What does this do? It effectively endows
individuals who previously had zero capitalist income with a tiny amount of
capitalist income (a few dollars). The effect may seem insignificant, but it has
an important impact on the capitalist income distribution. As shown in Figure
C.16, the adjusted model better matches the US data.
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Figure C.16: The Adjusted Capitalist Gradient Model vs. US Data

This figure shows the results of an adjusted capitalist gradient model. The adjusted
model allows individuals with a hierarchical power of 1 to have a small capitalist income.
This significantly changes the model’s Lorenz curve and Gini index. Panel A shows the
original capitalist gradient model’s Lorenz curve plotted against US data. Panel B shows
the adjusted capitalist gradient model’s Lorenz curve. Panel C compares the Gini indexes
of the original and adjusted models to US data. Panel D shows the top 1% income share.
US data is from the IPUMS database. See Appendix C.1.
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C.7 A Null Effect Model for Top Incomes and Firm Size

One of the predictions of the hierarchy model is that top incomes should be con-
centrated at the top of large institutions. To test this prediction, I look at the size
distribution of firms associated with top incomes. Here I develop a null-effect
model. This model is what we would expect to find if there is absolutely no re-
lation between firm membership and income. In the null-effect case, we should
find that the size distribution of firms associated with top earners is exactly the
same as the size distribution of firms associated with the general population.

To determine the null-effect we must find the size distribution of firms as-
sociated with the general population. Before doing so, some clarification is in
order. What we are talking about is the size distribution of firms associated with
individuals. As shown in Figure C.17, this is quite different from the firm size
distribution. To determine the firm size distribution, each firm is counted once.
However, when we map firm size to individuals, each firm is weighted by the
number of individuals within it. When we do this, we are really looking at the
distribution of employment by firm size. So what is this distribution? Let’s find
out.

If we randomly select an individual from the private sector population, let
p(i,) be the probability that this individual is associated with a firm of size x.
This probability will determine the size distribution of firms associated with a
random sample of individuals. Let p(x) be the probability of randomly selecting
a firm of size x from the firm population. Using Figure C.17 for guidance, we
can see that p(i,) is given by:

p(i,) ~ x - p(x) (C.45)

If we know p(x) — the probability distribution of firms — we can use Eq. C.45
to predict the firm size distribution associated with a random sample of individ-
uals. Let’s do so for the United States. The US firm size distribution can be
approximated by the power law distribution p(x) ~ x~2 (see Appendix C.5).
Substituting this into Eq. C.45 gives:

p(i,) ~x71 (C.46)

Because firm sizes generally span many orders of magnitude, it is more con-
venient to look at the log transformation of Eq. C.46. Therefore, we want to
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Figure C.17: Mapping Firm Sizes to Individuals

This figure illustrates the mapping of firm size to individuals. Each box represents a
firm, with size indicated above. The mapping of firm size to individuals appears below
each firm. Let p(x) be the probability of randomly selecting a firm of size x from the firm
population. Let p(i,) be the probability of randomly selecting an individual associated
with a firm of size x (from th individual population). Noting that each firm size x
appears x times in the individual-to-firm mapping, we can state that p(i,.) o< x - p(x).

know the probability density for p(Ini,). To find this, we use the standard
change-of-variable function for a probability density:

f=f(x() | ¥ | (C.47)

We let f, = p(Ini,) and f, = c- x~! (where c is constant). The transformation
function is y = Inx. We then note that x(y) = e* and x’(y) = e”. Substituting
into Eq. C.47 gives:

fy=c- ()& =c (C.48)

Since f), = p(Ini,), we can state that p(Ini,) = c, the uniform distribution. If
we randomly draw a sample of individuals from the US private sector, we predict
that their associated firm size distribution will be log-uniform. This is the null-
effect. If there is absolutely no relation between income and firm membership,
we should find that the size distribution of firms associated with top incomes (in
the US) is log-uniformly distributed.
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C.8 How Hierarchy Generates the Power-Law Tail

Although the hierarchy model is not tuned to do so, it reproduces (with good
accuracy) the power-law scaling of top US incomes. What is the mechanism at
work here? It turns out that the basic mechanism was theorized by Lydall [23]
in the late 1950s (and then largely ignored thereafter). It relies on the two
contrapuntal exponential tendencies of hierarchical organization: (1) the share
of employment tends to decrease exponentially with hierarchical rank; (2) in-
come tends to increase exponentially with rank. These two opposing tendencies
interact to produce a power law distribution of income (in the tail).

This mechanism is a specific case of a more general method. A power law will
be created any time we exponentially transform an exponential distribution [24].
The generative mechanism works as follows. Suppose we have some quantity y
that is exponentially distributed (here a is a negative constant):

p(y) ~e? (C.49)

In the case of hierarchical class structure, this would be the probability of
finding someone with a hierarchical rank y. What causes employment to be dis-
tributed (approximately) exponentially by rank? It is a generic result of branch-
ing hierarchical structure, in which each superior has control over multiple sub-
ordinates. If the span of control is constant, employment will decrease exponen-
tially with rank as one moves up the hierarchy. See Figure 4.1 for an idealized
picture.

Suppose that we have another variable, x, that is also exponentially related
to y:

x = bV (C.50)

In the context of hierarchical organization, x would be income, which increases
exponentially with rank. Why does income have this scaling behavior? Herbert
Simon suggests that it results from social norms [25]. My own view is that it
is caused by the power asymmetries that are innate to hierarchical organiza-
tion [26]. Hierarchical power (measured by the number of subordinates) tends
to increase exponentially with rank. If income is a function of hierarchical power,
then it too should increase exponentially with rank.

Moving on with our derivation, the question we want to know is this: how
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is income x distributed? To find out, we use the change of variable formula to
get f,, the density function of x:

fo=f(yx))-| ¥ () | (C.51)

We let f, = e®. Since x = e, we note that y(x) = %lnx and y’(x) = 1/bx.
Substituting into the change of variable formula gives:

f = e%lnx.bi _ %xa/b—l (C.52)
X

Thus the variate x (income) has a power law distribution with exponent
a =a/b—1. A caveat here is that the derivation assumes that both x and y are
continuous. If y represents rank, then it will be a discrete variable. This will
result in a non-continuous distribution of x.

To reiterate, hierarchical organization creates a power law distribution be-
cause of two contrapuntal, exponential tendencies: (1) employment tends to de-
crease exponentially with rank; and (2) income tends to increase exponentially
with rank. Figure C.18 highlights this contrapuntal behavior in the hierarchy
model. As expected, the hierarchical employment distribution has a bottom-
heavy pyramid shape (Fig. C.18A). The vast majority of people work in low
ranks, and only a tiny elite occupy top positions. The inset panel highlights
the exponential nature of the employment distribution. Here, the logarithm of
hierarchical employment share is plotted on the y-axis, against rank on the x-
axis. With this log transformation, a pure exponential function will appear as a
straight line.

Figure C.18B shows the model’s hierarchical pay structure. To make com-
parison easy, I have normalized all income so that the base-level income is equal
to one. As expected, hierarchical pay has an inverted pyramid shape. Average
income at the top of the hierarchy dwarfs (by several orders of magnitude) that
at the bottom. To highlight the exponential nature of this relation, the inset plot
shows the logarithm of income plotted against rank. Again, a pure exponential
function will appear as a straight line.

Note that neither relative employment nor pay has a purely exponential rela-
tion with rank. This is a design feature of the model, stemming from case study
evidence. In this data, income tends to increase supra-exponentially (faster than
an exponential) with rank. Conversely, employment tends to decrease supra-
exponentially with rank (see Appendix C.2 and C.4 for details). In any case,
when we combine these two supra-exponential tendencies, the result still seems
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Figure C.18: The Hierarchy Model’s Contrapuntal Exponential Tendencies

This figure shows the two contrapuntal exponential tendencies associated with the hi-
erarchy model’s class structure. Panel A shows the model’s aggregate distribution of
employment by hierarchical rank. The bottom-heavy shape results from firm’s hierar-
chical structure (in conjunction with the firm size distribution). The inset graph shows
the logarithm of employment share log(E), plotted against rank. The curved relation
indicates that employment declines with rank slightly faster than an exponential func-
tion. Panel B shows the model’s mean pay by hierarchical rank (normalized so that
the base level =1). The inset graph shows the logarithm of income logI against rank.
The curved relation indicates that income increases with rank slightly faster than an
exponential function.
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Figure C.19: Hierarchical Class Structure and the Distribution of Income
This figure shows the distribution of income for each hierarchical rank in the hierarchy
model. To clearly show the distribution tail, I have used a log-log transformation. In
each panel, a rank-specific income distribution is shown in color. For comparison, I also
show the model’s aggregate income distribution (black). The shaded region indicates
the top 1% of incomes (in the aggregate model distribution). To interpret this plot,
look at how closely each rank-specific distribution comes to the aggregate distribution.
The closer the two are, the greater the rank’s contribution to income distribution at that
point. The power law right tail (evident as the straight line in the aggregate distribution)
is jointly created by ranks five and up.

to be (roughly) a power law distribution of income in the model’s tail. (I have
not, as yet, worked out how this happens.)

To get a better picture of how this process works, we turn to Figure C.19.
Here I show how the model’s hierarchical class structure creates the tail of the
income distribution. Each panel shows the distribution of income of a specific
hierarchical rank. Note that I use a log-log transformation — this allows us to
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better see the tail of the distribution. To allow comparison, every panel also
shows the model’s aggregate income distribution. How do we interpret this
plot? Look at how closely each rank-based distribution comes to the main dis-
tribution. Where the two are close, it indicates that the particular hierarchical
rank contributes a great deal to the distribution of income at that point. To get a
sense for where the tail of the income distribution is located, I have shaded the
top 1% of incomes (in the aggregate model distribution). We can see that the
tail of the distribution is created by ranks 5 and above.

The take-home message here is that hierarchical class structure can serve as
a generative mechanism for creating the well-recognized Pareto scaling of top
incomes.



References 330

References

10.

11.

12.

. Current Population Survey. Annual Social and Economic Supplement; 2017.

. Virkar Y, Clauset A. Power-law distributions in binned empirical data. The

Annals of Applied Statistics. 2014;8(1):89-119.

. Alvaredo E Atkinson AB, Piketty T, Saez E, Zucman G. The world wealth

and income database. Website: http://www wid world. 2016;.

Alvaredo E Atkinson T, Piketty T, Saez E. The World Top Incomes Database;
2013. Available from: http://topincomes.parisschoolofeconomics.eu/#.

. Atkinson A, Lakner C. Capital and labor: the factor income composition of

top incomes in the United States, 1962-2006. World Bank Policy Research
Working Paper. 2017;8268.

. Piketty T. Capital in the Twenty-first Century. Cambridge: Harvard Univer-

sity Press; 2014.

Jenkins SB Burkhauser RV, Feng S, Larrimore J. Measuring inequality us-
ing censored data: a multiple-imputation approach to estimation and infer-
ence. Journal of the Royal Statistical Society: Series A (Statistics in Society).
2011;174(1):63-81.

Graf M, Nedyalkova D. GB2: Generalized Beta Distribution of the Second
Kind: properties, likelihood, estimation. R package version. 2012;1.

. Mishel L, Schieder J. Stock market headwinds meant less generous year

for some CEOs: CEO pay remains up 46.5% since 2009. Washington, D.C.:
Economic Policy Institute; 2016. 109799. Available from: http://www.epi.
org/publication/ceo-and-worker-pay-in-2015/.

Audas R, Barmby T, Treble J. Luck, effort, and reward in an organizational
hierarchy. Journal of Labor Economics. 2004;22(2):379-395.

Baker G, Gibbs M, Holmstrom B. Hierarchies and compensation: A case
study. European Economic Review. 1993;37(2-3):366-378.

Dohmen TJ, Kriechel B, Pfann GA. Monkey bars and ladders: The impor-
tance of lateral and vertical job mobility in internal labor market careers.
Journal of Population Economics. 2004;17(2):193-228.


http://topincomes.parisschoolofeconomics.eu/#
http://www.epi.org/publication/ceo-and-worker-pay-in-2015/
http://www.epi.org/publication/ceo-and-worker-pay-in-2015/

References 331

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Grund C. The wage policy of firms: comparative evidence for the US and
Germany from personnel data. The International Journal of Human Re-
source Management. 2005;16(1):104-119.

Lima E Internal Labor Markets: A Case Study. FEUNL Working Paper.
2000;378.

Morais E Kakabadse NK. The Corporate Gini Index (CGI) determinants and
advantages: Lessons from a multinational retail company case study. Inter-
national Journal of Disclosure and Governance. 2014;11(4):380-397.

Treble J, Van Gameren E, Bridges S, Barmby T. The internal economics
of the firm: further evidence from personnel data. Labour Economics.
2001;8(5):531-552.

Axtell RL. Zipf distribution of US firm sizes. Science. 2001;293:1818-1820.

Gaffeo E, Gallegati M, Palestrini A. On the size distribution of firms: ad-
ditional evidence from the G7 countries. Physica A: Statistical Mechan-
ics and its Applications. 2003;324(1-2):117-123. doi:10.1016/S0378-
4371(02)01890-3.

Gillespie CS. Fitting heavy tailed distributions: the poweRlaw package.
arXiv preprint arXiv:14073492. 2014;.

Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical
data. SIAM review. 2009;51(4):661-703.

Efron B, Tibshirani RJ. An introduction to the bootstrap. London: CRC
press; 1994.

Sanderson C, Curtin R. Armadillo: a template-based C++ library for linear
algebra. Journal of Open Source Software. 2016;.

Lydall HE The distribution of employment incomes. Econometrica: Journal
of the Econometric Society. 1959;27(1):110-115.

Newman ME. Power laws, Pareto distributions and Zipf’s law. Contemporary
physics. 2005;46(5):323-351.

Simon HA. The compensation of executives. Sociometry. 1957;20(1):32-
35.

Fix B. Evidence for a Power Theory of Personal Income Distribution. Work-
ing Papers on Capital as Power. 2017;No. 2017/03:1-125.



	Introduction: Economics from the Top Down
	Summary of Findings
	A Glimpse of a Synthesis?
	Methods
	Layout
	References

	Energy and Institution Size
	Introduction
	Energy and Institution Size: Empirical Evidence
	The `How' Question: Energy and Firm Dynamics
	The `Why' Question: Energy, Technology and Hierarchy
	Conclusions
	References

	Evidence for a Power Theory of Personal Income Distribution
	Introduction
	Theories of Personal Income Distribution
	A Hierarchical Power Theory of Personal Income Distribution
	Testing the Power-Income Hypothesis
	Discussion
	Conclusions
	References

	A Hierarchy Model of Income Distribution
	Introduction
	A Hierarchy Model
	A Capitalist Gradient Hypothesis
	A Hierarchical Redistribution Hypothesis
	Conclusions: Modeling from the Top Down
	References

	Conclusion: A Glimpse of a Synthesis?
	What is the Unit of Analysis in Economics?
	The Reduction
	A Synthesis of Growth and Distribution?
	Conclusion
	References

	Appendices for Energy and Institution Size
	Sources and Methodology
	Assessing Size Bias within Firm Databases
	The Firm Size Distribution as a Variable Power Law
	Testing Gibrat's Law Using the Compustat Database
	Instability of the Gibrat Model
	Properties of Stochastic Models
	Bias and Error in the GDP Labor Time Method
	A Hierarchical Model of the Firm
	An Agrarian Model of Institution Size
	References

	Appendices For Evidence for a Power Theory of Personal Income Distribution
	Data Sources
	Hierarchical Structure and Pay within Case-Study Firms
	A Hierarchical Model of the Firm
	The Compustat Data
	Estimating Compustat Model Parameters
	Compustat Model Results
	A Sensitivity Analysis of the Compustat Model
	The Between-Within Gini Metric and Effect Size
	References

	Appendices For A Hierarchy Model of Income Distribution
	Sources and Methods
	Hierarchical Structure and Pay within Case-Study Firms
	Compustat Data
	Hierarchy Model Equations
	Restricting Parameters
	The Adjusted Hierarchy Model
	A Null Effect Model for Top Incomes and Firm Size
	How Hierarchy Generates the Power-Law Tail
	References




